
335

Specifications of a Simplified Transport
Protocol Using Different Formal
Description Techniques
Gregor V. B O C H M A N N
Ddpartement d'informatique et de recherche opdrationnelle, Uni-
versitd de Montr~a£ Montreal, Canada H3C 317

Abstract. Formal description techniques have been developed
for the specification of OSI communication protocols and
services, and can also be used as specification langnages for
other application areas. This paper presents two complete
example specifications of a simplified Transport protocol (class
2) written in Estelle and LOTOS, and the outline of a similar
specification in SDL. These examples are of sufficient com-
plexity to demonstrate the difficulties encountered in the devel-
opment of formal specifications. They may also be taken as a
basis for a comparative evaluation of the three languages,
Estelle, LOTOS and SDL, bearing in mind that they are
particular examples.

Keywmds. Communication protocols, formal description tech-
niques, transport protocol, F.steRe, LOTOS, SDL, formal
specifications, protocol specifications, specification develop-
ment.

Gregorv. Bochmanu received the Di-
ploma degree in Physics from the Uni-
versity of Munich, Munich, West
Germany, in 1968 and the Ph.D. de-
gree from McGi l l Universi ty,
Montreal, P.Q., Canada, in 1971.

He has worked in the areas of pro-
gramming languages, compiler design,
communication protocols, and soft-
ware engineering and has published
many papers in these areas. He is cur-
rently a Professor in the D6partement
d'Informatique et de R~eherehe

Op&ationelle, Universit6 de Montr6al, Montr~l. His present
work is aimed at design models for communication protocols
and distributed systems. He has been actively involved in the
standardiT~tJon of formal description techniques for OSI. From
1977 to 1978 he was a Visiting Professor at the Ecole Polytech-
nique Federale, Lausanne, Switzerland. From 1979 to 1980 he
was a Visiting Professor in the Computer Systems Laboratory.
Stanford University, Stanford, CA. From 1986 to 1987 he was
a Visiting Researcher at Siemens, Munich.

North-Holland
Computer Networks and ISDN Systems 18 (1989/90) 335-377

1. Introduction

The orderly introduction of new communica-
tion protocols, for proprietary systems or Open
Systems Interconnection (OSI) [39], requires a
careful analysis of the proposed protocols and
services, and much effort for the development and
testing of protocol implementations. Much re-
search effort has gone into improving the working
methods for these activities. In this context, the
use of formal description techniques (FDTs) for
the specification of communication protocols and
services has received much attention, since such
techniques allow a more systematic approach for
protocol validation, implementation and testing,
as compared to the traditional use of protocol
specifications given in natural language (see for
instance [6] or [4]).

Three FDTs are presently considered for appli-
cation in this area, namely Estelle [13,26], LOTOS
[11,27] and SDL [15,35]. Estelle and LOTOS are
developed within ISO for application to OSI, but
can also be used in other areas of application.
Estelle is based on a finite state machine model
which is extended by Pascal data structures, ex-
pressions and statements for the description of
interaction parameters, additional state variables
and related processing. A specified system may
consist of a large number of interconnected state
machine modules. LOTOS is a combination of a
variation of Milner's CCS formalism [32] with a
particular notation for abstract data types called
ACT ONE [19]. Similar to the other FDTs, it
allows the construction of a specification from
several smaller components. SDL was originally
developed by CCITT for the description of switch-
ing systems, but can also be used in other areas of
application. Like Estelle, it, is based on an ex-
tended finite state machine model. It is largely
oriented towards a graphical representation. The
original language has been considerably extended
during the past years, also including facilities for

0169-7552/90/$03.50 © 1990 - Elsevier Science Publishers B.V. (North-Holland)

336 G. v. Bochmann / Formal description techniques

defining data structures, interaction parameters
and additional state variables. Abstract data types
are also supported.

The purpose of this paper is two-fold. First, we
try to demonstrate the difficulties that arise in the
development of formal specifications of protocols
as they appear in real systems by discussing an
example of sufficient complexity and detail. A
simplified version of the OSI class 2 Transport
protocol is chosen for this purpose. It includes, in
particular, the provision of multiple parallel con-
nections, multiplexing and flow control. Complete
specifications in Estelle and LOTOS for this ex-
ample are given in Annexes 1 and 2. A detailed
explanation of these specifications is given in Sec-
tion 3 and highlights the similarities and dif-
ferences of the different specifications. A sketch of
a specification in SDL is given in Annex 3.

In order to provide a basis for the comparison
of the different FDTs, an effort was made to
present specifications that are similar to one
another, as much as this was possible and reasona-
ble. For example, similar specification structures,
design choices, and identifier names were chosen
wherever possible. However, certain structural and
other differences between the specifications re-
mained and are largely due to the nature of the
underlying FDTs. Some of these differences are
discussed in Section 4. The discussion in Section 4
concentrates on those aspects of the specifications
and underlying FDTs which appear to be most
important for a comparative evaluation of the
different FDTs. Section 5 provides some conclud-
ing remarks.

2. The Role of Protocol Specifications

Protocol specifications play an important role
in the development life cycle of distributed sys-
tems. During the design phase of a distributed
system, the protocol specifications are developed
in relation with the communication service to be
provided by the system and the service available
from the system layer below, as indicated in Fig.
1. It is important to thoroughly validate the proto-
col specification, since it is the reference for the
implementations in all the system components.
During the implementation phase, it is not only
used for deriving large parts of the implementa-
tion code, but should also serve as the basis for

the selection of test cases for conformance testing
and for the evaluation of test results. A more
detailed discussion of these issues can be found in
[4,6].

If formal specification languages are used in
the design and implementation phases, different
descriptions can be used in the successive stages of
the development process. Starting with abstract
service and protocol specifications, which corre-
spond for instance to the OSI service and protocol
standards, successively more detailed and imple-
mentation-oriented protocol specifications can be
developed, which finally lead to the implemented
program code [9,38]. It seems that these successive
specifications differ from one another in respect to
two aspects:

(a) The specified behavior: Certain behavior
aspects, not defined in the original specification,
are determined during the implementation pro-
cess. This may include the addition of behavioral
possibilities which were originally not included,
such as the reaction to certain invalid inputs, or
the selection of "implementation choices" which
reduce the number of behavior possibihties, such
as the selection of options to be implemented. The
comparison of behaviors can be formalized
through various equivalences and "implement"
relations, as described for instance in [33] and [12].

(b) The structure of the specification: The struc-
ture of the more detailed specification reflects in
certain ways the structure of the intended imple-
mentation. A structural comparison of specifica-
tions is difficult to formalize. Vissers et al. identify
four major specification styles [17] which can be
classified into extensional specifications, which
define only "what" the specified system should
do, and intentional specifications, which also de-
fine to some extent "how" the specified behavior
is obtained by giving "implementation hints". The
specifications given in this paper are partly inten-
tional. For complex systems, it is often difficult to
write human-readable specifications without intro-
ducing some form of internal structure. The inter-
nal structure of the Transport protocol specifica-
tions, as shown in Figs. 2-5, clearly indicate more
detail than the "black box" structure of the proto-
col entity shown in Fig. 1.

In addition to the above two aspects, specifica-
tions can be distinguished by a third aspect [18],
namely the language in which they are written.
This is the aspect on which this paper focuses.

G. v. Bochmann / Formal description techniques 337

TP entity Transport
Layer

TP_entity

.

" . ! . 1
i .

Fig. 1. Structure of the Transport layer.

AP AP

I I I
Map

III
Fig. 2. Structure of Estelle specification.

Section 4 also includes some discussion of the
impact of specification languages on the style of
specifications.

3. Explanation of the Transport Protocol Specifica-
tions

This section contains a detailed explanation of
the specifications given in the annexes. Annexes 1

Q ps,pr
I I

Fig. 3. Structure of LOTOS specification.

and 2 contain complete specifications of a sim-
plified OSI class 2 Transport protocol [29]. The
functions supported by this simplified example are
described in Section 3.2.1 below. The specification
of Annex 1 was written first (an early draft in
1984) and has been influenced by an earlier com-
plete OSI class 0 /2 protocol specification [3]. The
specification of Annex 2 was written afterwards
(first version late 1986) and was modelled to same
extent after the specification of Annex 1. The
experience of writing this LOTOS specification
lead to some revisions of the specification in An-
nex 1. Influences from the formal specifications
developed within ISO [24,28] must also be
acknowledged.

The overall structure of the Transport layer is
shown in Fig. 1. The users of the Transport service
access this service through the Transport service
access points (TSAP), as shown in the figure. The
Transport service is provided by a collection of
Transport protocol entities, named TP-entity,
which in turn use the Network service for the

338 G. v. Bochmann / Formal description techniques

T$_intedace

AP(O,)

Map(l,1)

NS_interface

Fig. 4. Structure of SDL specification (using SDL graphic
symbols).

exchange of protocol data units (PDUs) between
one another. A protocol specification is the speci-
fication which must be satisfied by all protocol
entities in the layer.

The Transport service provided by the Trans-
port entities allows the users to establish Trans-
port connections between one another. Several
Transport connections can be established by a
given user through a given service access point,
usually leading to different destinations. At a given
access point, the different connections are dis-
tinguished by so-called connection end-point iden-
tifiers (TCEP indentifiers). The different destina-
tions are distinguished by so-called Transport ad-
dresses: Each address identifies a single access
point at the service level.

For a given Transport connection, the follow-
ing three phases of operation can be dis-
tinguished: (1) connection establishment, (2) data
transfer, and (3) disconnection. During the data
transfer phase, the users at both ends of the con-
nection can send and receive simultaneously data
in both direction. Data transfer is interrupted
when either user issues a disconnect request. The
disconnection phase may also be initiated by one
of the Transport entities involved, or through the
failure of the underlying Network connection.

The following explanation of the specifications
given in the annexes is written as two versions of
text. Most parts of the versions are identical and
only written once. Where the corresponding text
for the Estelle and LOTOS versions are different
(because of differences in the specifications) the
two versions are written one after the other in the
following from " . . . common text.. . {Estelle:...
text for Estelle version... } (LOTOS:...text' for
LOTOS version... } ... continuation of common
text.. . ".

The outline of the SDL specification given in
Annex 3 follows largely the structure of the Estelle
specification in Annex 1. Certain differences are
discussed in Section 4.

3.1. Internal Structure of a Protocol Entity

3.1.1. Addressing Conventions
It is assumed that each protocol entity uses

only a single Network service access point (NSAP),

TSAP

TClde I

J NCIdentiflcaUon J

1 TSTP I f
- a d s l ~ 1

• = = /

NSAP -

Fig. 5. Structure of ISO LOTOS specification.

G. v. Bochmann / Formal description techniques 339

identified by a particular Network address. This
implies a hierarchical addressing scheme where
each Transport address determines the Network
address over which the TSAP is accessible. In such
a case, it is convenient to partition the Transport
address into two parts: the "Network address"
prefix, and a suffix identifying the TSAP within
the Transport protocol entity servicing the NSAP
identified by the prefix. This address structure is
defined by the T_address_ type definition.

3.1.2. Service Access Points
As shown in Fig. 1, a common specification of

the Transport service access points is used in the
specifications of (a) the Transport service, (b) the
Transport protocol entity, and (c) the Transport
service user, i.e. the Session protocol entity. Such a
common specification defines the possible interac-
tions, also called "service primitives", their
parameters, and the local rules determining the
possible order of execution. (In the case of the
LOTOS specification in [28], this common part is
represented by the subprocesses TCEP which are
part of the TC processes shown, in Fig. 5.) It is
noted, however, that the local rules are often not
explicitly defined. This is also the case for the
specifications given in the annexes. The Transport
service primitives and their parameters are defined
by the part of the specification entitled (Estelle:
Definition of Transport Service Primitives}
{LOTOS: TCEP_ primitives}.

A given Transport connection is identified,
within the supporting Transport entity, by the
address suffix of the supporting TSAP and the
TCEP identifier. {Estelle: The array of interaction
points TS of the PT_entity module represents the
service access points of the Transport entity. For
each interaction taking place at one of these inter-
action points, the first index of type T_suffix-type
indicates to which TSAP the interaction pertains;
the second index indicates the TCEP identifier of
the connection.} {LOTOS: All Transport service
interactions take place at the gate TS. Each inter-
action includes three parameters, namely the ad-
dress suffix of the TSAP to which the interaction
pertains, the TCEP identifier of the connection,
and the service primitive exchanged. }

A similar specification applies to the Network
access points. The Network service primitives are
defined in the part entitled (Estelle: Definition of
Network Primitives} {LOTOS: NCEP primi-

tives}. Since only a single Network access point is
used by a given Transport entity, a Network con-
nection is identified by the value of its NCEP
identifier. The Network access point is repre-
sented by the {Estelle: interaction point array}
{LOTOS: gate NS of the TP_entity }.

3.1.3. Submodules of an Entity
The behavior of the TP_entity is described in

the following by first defining an internal sub-
structure of the entity in terms of submodules and
their interconnection. A static structure shown in
Figs. 2-5 is assumed. This structure foresees one
AP module per possible Transport connection,
and a single Map module which provides the
multiplexing function and looks after the sending
and receiving of the TPDUs. This substructure
can be defined as follows.

{Estelle: Written at the end of the specifica-
tion, an array of AP module variables and a Map
module variable are declared. These modules are
initialized through the execution of Estelle INIT
statements which are part of the initialization code
for the Transport entity. The CONNECT and
ATTACH statements then create the interconnec-
tion structure shown in Fig. 2.}

(LOTOS: The process structure shown in Fig.
3 is defined by the text of the TP_entity module.
The parameters tc_ ids and nc _ ids determine what
the possible connection end-points at the different
service access points can be. As defined by the
text of the processes AP_modules and
NC_managers, their invocation by the TP_entity
is equivalent to the parallel invocation of a num-
ber of AP_closed and NC_manager modules, re-
spectively. A AP_modules process, for instance,
receives as parameter a set of <T_suffix,
TCEP_id> pairs which represent a set of possible
Transport connection identifications. The defined
process is equivalent to the invocation of a new
AP_closed process for a selected <T_suffix,
TCEP_id> pair and its replacement (so to speak)
by another invocation of AP_modules where the
selected pair is deleted from the parameter set.}

The above substructure of a protocol entity is
one among many possibilities. The choice of a
particular substructure for the formal specification
of a protocol entity does not imply that the same
substructure must be manifest in any implementa-
tion of the protocol. (An implementation should
only exhibit the behavior defined by the specifica-

340 G. v. Bochmann / Formal description techniques

tion.) However, the choice has certain implications
about what properties are evidently satisfied by
the defined behavior. Important considerations for
the choice of a substructure are the following:

(a) Which parts of the specified system operate
independently of one another? Such parts could
usually operate "in parallel".

(b) If two parts of the specified system share
some common information, these parts may either
be represented as a single module which contains
this information as an internal state, or as two
submodules which exchange their knowledge about
this information by means of interactions.

The AP submodules in the protocol entity re-
finement above operate independently from one
another, since they deal with separate connections.
However, the different connections interfere with
one another when they are multiplexed over a
single, shared Network connection. The latter
aspect is handled by the {Estelle: Map module.}
{LOTOS: Map and Unique_refs modules.}
{Estelle: The fact that the Map module, by defini-
tion, executes one transition at a time, and each
transition deals with a single connection, implies
that mutual exclusion is established between oper-
ations for different connections. It is to be noted
that the sequential execution of the transitions of
the Map module exhibits less parallelism than
would be possible. In fact, among the transitions
of the Map module, there are many that have no
conflict, nor do they operate on shared informa-
tion. An implementation could therefore execute
these transitions in parallel.} {LOTOS: The Map
module is further subdivided into PDU_handlers,
one for each Transport connection. The mutual
exclusion of access to the Network connection is
realized by the gate NS. A specification describing
PDU concatenation would probably include a
subprocess per Network connection. }

3.2. Functional Decomposition and Inter-module
Communication

While the specification substructure shown in
Figs. 2-5 was obtained by an overall considera-
tion of independent Transport connections and
their multiplexing over shared Network connec-
tions, more detailed design choices must be made
in order to determine what functions each of the
submodules should realize. A useful design criteria
is to minimize the required communication be-

tween the submodules. These issues, as they relate
to the Transport protocol, are discussed in this
section.

3.2.1. Functional Decomposition
The following functions of a Transport proto-

col entity can be identified [8,36]:
(a) Addressing: To select the correct TSAP for

remotely initiated connection requests, and select-
ing Network connections with appropriate remote
Network addresses for connection requests ini-
tiated by local users.

(b) Local identification of Transport connec-
tions: To identify Transport connections based
either on locally selected reference numbers (for
incoming PDUs), or on the local Transport ad-
dress suffix and the TCEP identifier (for service
primitives received from the users).

(c) Connection establishment, and clearing: To
be able to establish, and clear Transport connec-
tions, as requested from the remote peer protocol
entity or the local user.

(d) Data transfer: To be able to transfer user
data over established Transport connections. This
includes the flow control at the local interfaces of
the Network and Transport SAPs. (Note that the
principle of flow control is to make the sender side
wait until the receiver side is ready for reception.)

(e) End-to-end flow control: To exchange con-
trol information with the peer protocol entity (in
the form of acknowledge (AK) PDUs and certain
parameters of other PDUs) in order to control the
flow of data between the two protocol entities.

(f) Option negotiation: To be able to negotiate
the values of options to be used over a connection
to be established, based on options proposed by
the users at the two ends of the connection.

(g) Connection parameter negotiation: To be
able to negotiate values of certain parameters to
be used over a connection to be established. In
contrast to option negotiation, these parameters
are selected by the two protocol entities largely
based on their implementation parameters, and
possibly also on performance parameters provided
by the users.

(h) Multiplexing: The use of a single Network
connection for several Transport connections
(provided that the Network prefixes of the Trans-
port addresses are the same).

(j) Segmentation: To be able to handle arbi-
trarily long Transport service data units (SDUs).

G. v. Bochmann / Formal description techniques

....... \k 7 o, ,oo,oo-7
C R / T C O N i n d \ / \ ._ /

(Notation:/X means "output of X")

Fig. 6. State diagram for a single Transport connection.

341

It is assumed by the specifications in the annexes
that the SDU segments provided by the user of
the service interface are already of such a length
that they can be included in a single PDU.

(k) Network connection management: This
aspect is largely simplified for the specifications in
the Annexes. It is assumed that the Network con-
nections are initially established and remain al-
ways open.

3.2.2. Allocation of Functions to Submodules
The functions above are allocated to the two

types of submodules of the TP-entity based on the
question whether they can be executed for each
Transport connection independently of other
Transport connections, or not. In the former case,
the function is performed by the AP module
(which handles a single Transport connection).
The functions handled by the AP module are data
transfer, end-to-end flow control, option negotia-
tion, segmentation. Connection establishment and
cleating, as well as connection parameter negotia-
tion involves the AP as well as Map modules. The
other functions are handled by the Map module.

This partitioning is reflected in the declaration
of the {Estelle: local variables} {LOTOS: parame-
ters} of the submodules. The variable/parameter
opt of the AP modules records the options selected
for the connection. The other variables/
parameters are sequence counters and credit val-
ues for window-oriented flow control for the two
directions of data transfer.

{Estelle: The variable state represents the major
state, as shown in Fig. 6} {LOTOS: The major
states shown in Fig. 6 are represented partly by
the different A P x x x x processes, where xxxx
represents the state where the process starts its
execution, and partly by the "locus of execution"
within the active AP_xxxx process. Note that
only one of the A P x x x x processes is active at a
given time for a given connection.}

(EsteUe: The body of the Map module contains
two arrays of state information. The array TC
records for each Transport connection, identified
by an index in the array, certain information
required for the functions performed by the Map
module. In particular, the variable assigned_NC
indicates which Network connection is used by the
Transport connection for the transmission of
PDUs. The value undefined means that no Net-
work connection is assigned. (This value is used
when the Transport connection is in the closed or
wait _for_ CC state.)}

(LOTOS: The state information required by
the Map process for the Transport connections is
kept as parameters of the PDU_handler sub-
processes. A PDU_handler process is created
when a connection is established and contains in
particular the NC_ id parameter which determines
the associated Network connection. }

Since the Network connections are assumed to
be always open, only minimal information is re-
quired, namely the Network address of the remote
Transport entity, which is checked when a new

342 G. v. Bochmann / Formal description techniques

Transport connection is to be allocated. (Estelle:
The array NC records for each Network connec-
t ion this i n f o r m a t i o n . } { L O T O S : T h e
NC_ manager process includes this information as
parameter.}

The only global information, pertaining to all
connections, is the set of local references in use.
{Estelle: This information is held in the variable
active _ references of the Map module. } { LOTOS:
This information is held as parameter of the pro-
cess Unique _ refs. }

3.2.3. Communication Between the Submodules
The communication between the AP and Map

modules is mainly concerned with information
about the PDUs exchanged with the remote proto-
col entity. (Estelle: This information is included
in the data type TPD U_ and_ control_ information
which also contains some "control information"
(as indicated by the comments). For instance, the
field full is used to indicate whether a PDU buffer
contains a PDU or not.} (LOTOS: This informa-
tion is defined by the data type p_info.} This
information is exchanged between an AP module
and the Map module (Estelle: through a channel
of type PDU_and_control.} (LOTOS: at the gates
pr and ps, respectively. The gate pr is used for
reception of PDUs and ps for sending.}

The {Estelle: interaction terminated } {LOTOS:
gate t } is used by the modules to indicate to one
another that a connection is closed after the last
PDU was received or sent. Additional communi-
cation is required for flow control (see Section
3.5).

{LOTOS: An additional gate a is used for
assigning a new Transport connection to a given
Network connection. Interactions at this gate, as
well as for gate t, involve all submodules of the
TP_ent i ty (see Fig. 3).}

3.3. The AP Module

The specification of the AP module defines the
order for exchange of PDUs with the peer Trans-
port protocol entity and for exchange of service
primitives with the local user of the Transport
service. This order is shown in Fig. 6 in the form
of a state transition diagram. The specification of
the AP module also defines the allowed interac-
tion parameters values, not shown in the figure.

Also not shown in the figure are functions such as
interface and end-to-end flow control. In order to
facilitate the dicussions below, the transitions
shown in the figure are labeled with names T 1
through Tll. The corresponding parts of the for-
mal specifications are indicated in the annexes.

For the establishment of a Transport connec-
tions, there are transitions for the case that the
connection is initiated by the local user (transi-
tions T 1 and T 2), and for the case initiated by the
peer entity (transitions T 3 and T4). The first tran-
sition is executed when the user initiates a
TCONreq primitive, which contains as parameters
the destination address and a proposal for the
options to be used over the connection. It is
assumed that the entity is ready to receive such a
request for the AP in question. The action of the
AP module is simply to forward a CR PDU to the
Map module. CR _PDU is a function which is
introduced to simplify the notation for sending
PDUs. It returns as result a {Estelle: record of
type TPD U_ and _ control_ information } (LOTOS:
value of sort CR _PDU } which represents a CR
PDU including the parameters passed to the func-
tion as arguments, not including, however, the
local and remote reference numbers which are
added by the ,Map module. Similar functions are
defined for forming other kinds of PDUs. The
definition of these functions can be found in the
part entitled PDU definitions of the specifications.
{Estelle: The proposed options are also recorded
in the local opt variable because their value is
needed for checking the option parameter of the
CC PDU to be received.}

The second transition (T2a) describes the action
to be taken when a CC PDU arrives (in response
to the CR sent by the first transition), and checks
whether the accepted options mentioned in the
PDU are among those proposed initially. (Note
that it is possible that the remote user does not
accept all of the options proposed by the initiator.)
The AP module records the accepted options,
which will be used for the established connection,
and sends a TCONconf primitive to the user
indicating the successful establishment of the con-
nection. The CC PDU also contains a credit_ value
parameter which indicates the credits given by the
remote entity for data transfer from the local user
to the remote side. (Estelle: The variables}
{LOTOS: The parameters of the AP_open process
named} TSseq and TRseq are the sequence coun-

G. v. Bochmann / Formal description techniques 343

ters for the DT PDUs to be sent and received,
respectively. They are set to zero.

Another transition (T2b) is executed when a CC
PDU is received which contains options not origi-
nally requested. Such a response is not accepted
and leads to the termination of the connection.

The establishment of a connection in response
to a CR PDU received from the peer Transport
entity is described similarly by the transitions T3
and T 4.

There are many different cases of connection
termination that may occur, in addition to the
case above. These cases are described by different
transitions of the AP modules which are men-
tioned below.

Transition Tab is executed when the user re-
fuses an incoming connection request, given in the
form of a TCONind, by responding with a TDIS-
req. It leads to the sending of a DR PDU. Transi-
tion T2c is executed when such a DR PDU arrives
in response to a CR PDU sent to the peer proto-
col entity.

Transition T9 corresponds to a termination re-
quested by the local user during the data transfer
phase. Transition T12 covers the case that the
termination originates on the other end of the
connection. In contrast to the initial refusal of a
connection (transitions T2c or T4¢), the termination
in the data transfer phase involves the additional
exchange of a DC PDU. The reception of such a
DC PDU is described by transition Tlo a. Transi-
tion Tll, finally, is a spontaneous transition which
leads to the termination of the connection without
user initiative. It may be executed by a protocol
entity in exceptional .situations, for instance in
case of congestion.

The data transfer phase of the protocol is de-
scribed by the transitions T 5 through T 8. The first
two transitions handle the sending and receiving
of DT PDUs, respectively. The sequence counter
and credit var iables/parameters are updated
accordingly. Note that on reception, the sequence
number and the available credit are checked. The
flow control issues (transitions T7x and Tsx) are
discussed in Sections 3.5.

3.4. The Map Module

The other functions, such as addressing, PDU
en- and de-coding, multiplexing, etc. are mainly

handled by the Map module. Its operation is
explained in the following.

{Estelle: The "s ta te" variables of the Map
module contains information about all Transport
connections and Network connections. } { LOTOS:
The Map process creates a PDU_handler process
for each established Transport connection. The
parameters of this process contain the required
information on that connection. For each Net-
work connection, there is also a NC_manager
process, which includes as parameter the necessary
information about that connection. The latter
processes are only involved in interactions on the
a and t gates at the beginning and end of a
T r a n s p o r t connec t ion . The PDU_handler
processes perform the sending and reception of
PDUs.)

The sending of PDUs is described in two steps.
The PDUs received from an AP module are first
stored in a PDU_buffer (see part Tb). {Estelle:
There is one buffer for each kind of PDU, for
each Transport connection. } { LOTOS: The buffer
parameter of the PDU_handler process is a se-
quence of PDUs. The corresponding data type
PDU_ buffer_ type is based on the predefined string
type of LOTOS.}

These stored PDUs may be sent in coded form
as data fragment in a Network NDATA service
primitive, as described in part T s. (Estelle: This is
done by a (spontaneous) transition which is only
executed when, for a given Transport connection
and PDU kind, the PDU buffer contains a PDU,
and the Network connection assigned to the
Transport connection is ready to receive more
data (flow control at the Network service inter-
face).} The PDU is coded and sent as a Network
SDU. Before the PDU is encoded, the information
received from the AP module is complemented
with certain PDU parameters which are de-
termined from the information available in the
Map module.

It is important to note that the order in which
the PDUs for a given Transport connection are
sent over the assigned Network connection is not
necessarily the same in which they were submitted
by the AP module. It may happen that several
PDUs are stored some time before they are sent
(possibly due to Network flow control). For exam-
ple, expedited data PDUs (not described here) or
AK PDUs may overtake normal DT PDUs. In
order to allow for such overtaking, but disallow

344 G. v. Bochmann / Formal description techniques

overtaking of DT over expedited or CC PDUs,
each kind of PDU is assigned an order attribute
which assigns a kind of priority to each type of
PDU ((Estelle: see assignment in functions
CR _PDU, etc. in the AP module} (LOTOS: see
type PDU_ ordering)). The predicate order con-
straint ((EsteUe: a function declared in the Map
module) (LOTOS: defined in the PDU_ordering
type}) is used to check that for each PDU sent the
order in consistent with the priority rules. In ad-
dition, DR and DC PDUs may overtake other
PDUs by destroying them, since the Transport
termination phase is "destructive". (Estelle: This
is modeled by statement S 1 in transition T3. }
{LOTOS: The operation drop (see PDU_ordering
type definition) is used for destructive overtaking. }

A Network connection must be "assigned" to a
newly requested Transport connection before any
PDU can be sent. {EsteUe: This is done by execut-
ing transition Ta. } (LOTOS: This is done by an
event at the a gate, and involves the AP, Map,
Unique_refs, and NC_manager processes.) This
operation is executed when for a given Transport
connection a CR PDU (Estelle: has been}
(LOTOS: is} forwarded by the corresponding AP
module, and a Network connection exists which is
connected to a remote entity with has the address
corresponding to the destination address re-
quested in the PDU. (LOTOS: This latter condi-
tion is checked by the NC_manager process.}
During this operation, a local reference is also
selected which is used to identify the Transport
connection among all the other connections han-
dled by the Transport entity. (Estelle: The selec-
tion of a new reference is performed by the proce-
dure assign _new_ref which also updates the set
of active reference numbers. A specification of a
possible algorithm is given by the procedure defi-
nition of the annex.) {LOTOS: The selection of a
new reference is performed by the event at the a
gate (which generates the new value) since none of
the participating processes determines the value.
The condition that the new reference should pre-
sently not be in use is imposed by the Unique_ refs
process.}

The reception of PDUs is described by part T r.
This part is executed when a NDATA primitive is
received from the Network containing the PDU in
question.

{Estelle: The received PDU is decoded and the
function exists_ TP determines whether a corre-

sponding Transport connection already exists. If
such a connection does not exists, the PDU should
be a CR requesting the establishment of a new
Transport connection. It is assumed that a free
local Transport end point identifier EP_id can
always be found for the new connection. The
value for the local variables of the new connection
are determined, and the PDU is forwarded to the
corresponding AP module.)

(LOTOS: PDUs with values for NC_id and
dest_ref for which no corresponding PDU_han-
dler is active must be received directly by the Map
process. It accepts only CR PDU's (see part Ta.).
After the assignment of a local reference (event at
gate a, see discussion above) a corresponding
PDU_handler is created and operates in parallel
with the Map until the Transport connection is
terminated through an event at the t gate. The CR
PDU is a parameter of the assign operation and is
passed during that operation to the assigned AP
process which processes it further. The AP pro-
cess participating in the assign operation imposes
the condition that no Transport connection is
active at the given end point and the Transport
address suffix of the end point corresponds to the
one requested in the CR PDU.}

If a Transport connection already exists for the
PDU received, the PDU is immediately forwarded
to the corresponding AP module. {LOTOS: For
all PDUs, except CR, this is done by the corre-
sponding PDU_handler process (see part Tr).) In
the case that a CC PDU is received, the remote
reference is recorded in order to be used as refer-
ence in the PDUs to be sent for this connection
{LOTOS: (see function update_source_ref de-
fined within the PDU_type definition)}.

3.5. Flow Control and Synchronization Issues

In the case that a source module transfers data
to a destination module, it is evident that the
reception process in the destination process can-
not go faster than the data output from the source.
However, buffering problems may occur when a
fast source does not wait for a slow reception
process. The purpose of "flow control" is to have
the source process restrain from sending when
either the destination or the transmission medium
is not capable of handling the data at the speed of
the source.

G. v. Bochmann / Formal description techniques 345

Flow control can be described through differ-
ent mechanisms. This section discusses how these
issues are described in the specifications in the
annexes. The end-to-end flow control mechanism
performed between the peer protocol entities is
usually described precisely by the protocol specifi-
cation, the aspects of interface flow control are
sometimes ignored [24] or sometimes described in
a very abstract manner [28]. From the pragmatic
standpoint, there is clearly a relation between the
end-to-end flow control and the flow control at
the interfaces related to the limited buffering
within the protocol entities. In the specifications
of the annexes, a particular design choice was
taken by limiting the amount of buffeting within
the entities.

3.5.1. Flow Control for Sending User Data
Transitions Tga through Tgc deal with end-to-end

flow control for sending user data. Transition Tsa
describes the action of the protocol entity when an
AK PDU is received. The S_credit variable is
updated according to the credit value received. A
TDATreq interaction is only accepted when the
S_credit variable/parameter has a value greater
or equal to 1. The received user data blocks are
stored in the PDU buffer of the Map module until
they are sent over the network. {Estelle: Since the
PDU buffer is limited to one block only, there is
the additional condition that the DT PDU buffer
should be empty. This fact is conveyed by the
Map module by sending the ready interaction to
the AP module (see statement S 2 of transition Ts).
The AP module uses the map_ready variable to
remember whether the PDU buffer is empty (see
transition Tsb). When both conditions are satisfied
a READY interaction is sent to the user module
(see transition T~). This gives permission to send
one TDATreq.} {LOTOS: The TDATreq is re-
ceived from the user by the AP_open process
through transition 5. The guard S-credit ge 1 and
the rendezvous nature of the interaction effect the
flow control. }

3. 5. 2. Flow Control for Receiving User Data
The specifications are written in such a manner

that credit is only given to the remote Transport
entity for as much data as the user is ready to
receive. The user indicates his willingness to re-
ceive data blocks by invoking the U_READY
service primitive which contains as parameter the

number of additional blocks to be received. This
information is stored in the R _credit variable/
parameter of the AP module (see {Estelle: transi-
tion TTa } {LOTOS: transitions T7a and TTa.}).
The value of R _credit is used to determine how
many credits are sent in acknowledgment PDUs
to the remote peer Transport entity (see transition
TTb). This transition may be executed any time. It
is assumed that it is executed often enough to
obtain a reasonable throughput for the data trans-
fer from the remote site to the local user.

3.5.3. Synchronization of Connection Termination
It is important to note that after a TDISreq or

a TDISind for a given pair of T_suf and EP_id,
the user should not immediately send a new con-
nect request, since a DC or DR PDU may still
have to be sent. It is therefore necessary to advise
the user when a new TCONreq can be sent.
{EsteUe: For this purpose the TDISconf service
primitive and an intermediate state closing are
introduced. The TDISconf primitive is invoked by
the Transport entity after each TDISreq or
TDISind when the transition to the closed state
occurs.} (LOTOS: The fact that the TCONreq
interaction (see transition T 1 of the AP_open pro-
cess) is only possible at the beginning of the AP
process (which is reimtialized after the complete
termination of the previous connection, see transi-
tion T12 of the AP_disc process), and the ren-
dezvous nature of the TCONreq interaction force
the user to wait. }

The AP and Map modules synchronize the
complete termination of a connection through
{EsteUe: the terminated interaction} {LOTOS: an
event at the t gate}.

3.6. Protocol Functions Not Described

The following list indicates functions of the
ISO/CCITT class 2 Transport protocol [29] which
are not supported by the simplified protocol de-
scribed in this paper.
- Only a single Network service access point

(NSAP) is supported by the specified entity.
- TPDU size negotiation does not exist.
- It is assumed that Network connections always

remain open. No Network connection establish-
ment, disconnection nor reset are considered.

- There is no user data in TCON req primitives.
- Expedited data transfer is not specified.

346 G. v. Bochmann / Formal description techniques

- The handling of procedure errors committed by
the remote entity is not described.

- The possible limitation of local resources is not
considered.

- There are no address parameters in CC PDUs.
- S i m p l e hierarchical addressing is assumed,

where a Transport address consists of the Net-
work address prefix and a Transport suffix.

- The Transport user initiating a connection can-
not disconnect until the response from the peer
has been received.

- There is only limited buffering of user data in
the Transport entity.

- Concatenation of several PDUs into a single
Network service data unit is not described.

- It is assumed that the user processes do the
necessary segmentation of longer Transport
service data units.

4. Comparison of the Specification Languages

As pointed out before, the specifications in the
annexes have been written with the objective to
make their structure and form as similar to one
another as seemed reasonable, given the con-
straints of the different languages. Differences be-
tween the specifications, which became partly evi-
dent from the description in Section 3, are there-
fore largely related to differences between the
specification languages. The purpose of this sec-
tion is to discuss the specification differences and
at the same time discuss certain important dif-
ferences between the languages.

It is important to note that the following dis-
cussion does not pretend to address all important
differences between these specification languages.
Additional aspects of comparison between the
specification languages can be found in [5,40,41].

4.1. Synchronous Versus Asynchronous Inter-module
Communication

In SDL and Estelle, interaction between two
modules is through message passing. One module
generates an output interaction, including its
parameters and places it into a queue from where
it is subsequently taken as input by the receiving
module. This mode of communication is some-
times called "asynchronous" because the output-

ting module usually continues its processing be-
fore the output is processed by the receiving mod-
ule.

In LOTOS an interaction between several mod-
ules can only be initiated if all participating mod-
ules agree; each of them determine some parame-
ter values, or impose conditions on these values.
This mode of communication is also called "syn-
chronous" or "rendezvous", because all modules
participating in an interaction do so at the same
time, and the execution of an interaction implies a
simultaneous state change for all participating
processes.

This difference in the nature of inter-module
communication has a strong impact on the way
the specification languages can be used to define
communication between different system modules.
Two particular aspects are discussed in the subsec-
tions below. It is noted that Estelle also allows for
the possibility that variables are shared between
modules. This introduces some form of "synchro-
nous" communication. Also certain dialects of
Estelle have introduced rendezvous communica-
tion as an option [16,22,30]. On the other hand,
asynchronous communication can be modelled in
LOTOS by introducing queues explicitly between
the communicating system modules.

4.1.1. Flow Control
With rendezvous interactions, each module par-

ticipating in an interaction may pose his own
conditions for the execution of the interaction or
its parameter values. This may be used for defi-
ning flow control and other conditions. For exam-
ple, the interface flow control by which the Trans-
port entity restrains the user from sending more
data is described by this mechanism (see Section
3.5.1). Similarly, the readiness for a new Transport
connection is indicated in this manner (see Section
3.5.3). The specification of these issues with
asynchronous interactions requires additional in-
teractions (e.g. the R E A D Y and TDISconf Trans-
port service primitives in Annex 1). The resulting
specification is more complex.

It is important to note that not all flow control
issues can be handled in this manner. For in-
stance, data flow control in the other direction is
handled also in the LOTOS specification of An-
nex 2 with an additional service primitive (see
Section 3.5.2). It is noted that these aspects are
sometimes not defined formally [24], but only

G. o. Bochmann / Formal description techniques 347

informally. They are, however, an important aspect
of a system, and should be specified.

4.1.2. Interaction Cross-over at Interfaces
With rendezvous interactions, all participating

modules are aware of the execution of an interac-
tion; with queued interactions, the receiving mod-
ule may not be aware of the readiness of the next
input when it produces an output. This may lead
to unintended cross-overs of interactions between
two communicating modules, sometimes called
"collisions". For the specification of Annex 1, for
instance, a user may output a TCONreq interac-
tion which is entered into the queue of an AP
module, while at the same time, the same AP
module executes a T 3 transition and enters a
TCONind interaction into the queue of the same
user module. The possible occurrence of this situa-
tion is not foreseen in the specification of Annex
1. (A similar cross-over of CR PDUs may occur at
the interface between an AP module and the Map
module.) It is important to note that not all cross-
overs in corresponding queues lead to such prob-
lems, e.g. the cross-over of TDATAreq and
TDATAind interactions at the user interface pose
no particular problems.

There seem to be the following approaches to
solving cross-over problems of asynchronous com-
munications:

(1) To ignore them, as in Annex 1 (in general
not satisfactory).

(2) To write the specification in such a manner
that the cross-over situations are taken care of.
For the example of Annex 1, one may write the
specification of the AP module in such a manner
that an incoming TCONreq interaction in the
wait_for_TCONresp state (after sending a
TCONind, see Fig. 6) will be dropped. Inversely,
the AP module may be defined in such a manner
that it goes back to the closed state and processes
the TCONreq normally. These two design choices
correspond to giving priority to the incoming or
outgoing calls, respectively. (A general approach
for handling such conflicts based on priorities is
described in [20]; cross-over problems at the
Transport interface are further discussed in [10].)
It is important to note, however, that such deci-
sions are adequate for interface standards, but not
for the abstract interface definitions of protocol
standards, where such decisions should be left to
the implementation phase.

(3) To assure that they cannot occur due to the
structure of the system specification. For example,
any hand-shake oriented communication structure
avoids cross-overs; therefore, a cross-over of
TCONresp and TCONconf cannot occur. This ap-
proach largely limits the kind of possible com-
munication structures, and therefore is not gener-
ally applicable.

(4) To impose a specific run-time environment
of interpretation rule such that cross-overs cannot
occur. An example of such a rule is a system-wide
priority of input transitions over spontaneous
transitions. Together with a restriction that a tran-
sition generates at most one output, this rule as-
sures that any waiting input will be processed
before another spontaneous transition may pro-
duce an additional queued interaction. If the sys-
tem contains initially no queued interaction and
receives none from its environment (or only a
single one after all its internally queued interac-
tions are processed) then the system contains at
most one queued interaction at any given time,
and no cross-over can occur.

4.2. The Concept of "'Transition"

The languages SDL and Estelle use the concept
of " transi t ion" to model a state transition of a
module which is initiated by an available input
interaction. When executed, a transition leads from
a given major state through updating of state
variables and output generation to a new module
state, in which further input is expected. An exam-
ple is given in Fig. 6, where each arrow represents
a transition of the AP module. It is interesting to
note that the same "transit ions" can also be iden-
tified within the LOTOS specification.

In SDL, there is (at most) one transition per
major state and possible kind of input interaction.
The next state in which input is expected may
depend on decisions which are part of the actions
associated with the transition. A transition, once
started, cannot be interrupted by other modules.
The situation is similar in Estelle. However, there
may be several "Estelle transitions" for a given
major state and kind of input. Any one of them
may be executed, unless the associated PRO-
VIDED clauses define additional conditions. As
an example, Annex 3 shows how the EsteUe transi-
tions T2a and T2b are written in SDL as a single
"S D L transition".

348 G. v. Bochmann / Formal description techniques

In Estelle, there is also the concept of a sponta-
neous transition, which has the properties de-
scribed above, except that there is not associated
input interaction, Instead, a spontaneous transi-
tion can be selected for execution only based on
the present major state and other variables as
expressed in the FROM and PROVIDED clauses.

A transition has an atomicity property, which
means that, once started, any output foreseen by
the transition must be completed before the same
module can initiate another transition. In the case
of asynchronous communication, this poses no
problem, since output is queued in the input
queue(s) of the receiving module. In the case of
models of communicating finite state machines
without queuing (e.g. [2] or [1]) or Estelle dialects
using rendezvous interactions, the system designer
must take care that no deadlock situations are
possible where, for instance, two communicating
modules are in the midst of a transition and want
to send output to the other. Note that this situa-
tion, in the presence of queues, leads to the cross-
over discussed in Section 4.1.2.

One way to avoid these deadlock possibihties is
by restricting transitions to the following kinds of
basic transitions:

(a) pure input transition, effecting no output,
and

(b) spontaneous output transitions, which are
initiated independently of any waiting input.
Many finite state reachability tools are based on
such a model (e.g. [7]). An SDL or Estelle transi-
tion can easily be decomposed into several basic
transitions by the introduction of additional inter-
mediate states. It is noted that the Map module of
the Estelle specification in Annex 1 uses only
basic transitions for the processing of PDUs to be
sent. With this specification style, it is necessary to
store the information received with an input in
appropriate state variables (e.g. the PDU_buffer)
for use by subsequent output transitions. How-
ever, such intermediate storage is necessary any-
way if flow control considerations may disallow
the production of output, which is the case in our
example.

4.3. Assertional Specifications and Abstract Data
Types

Estelle uses the Pascal data type definitions,
procedures and other statements for the definition

of the operations on interaction parameters and
state variables. This favors an "algorithmical"
specification style, which is appropriate for most
parts of protocol specifications, as our example
shows. However, there are certain parts in many
specifications, where a more "assertional" specifi-
cation style is more appropriate. In the latter style,
the specification would define what properties the
module would have, not what algorithm it ex-
ecutes in order to obtain these properties. A typi-
cal example is the procedure assign _new_r el in
Annex 1, which finds a new local reference for a
new Transport connection. The required property
is that this new reference is not yet in use. The
Estelle specification uses the EXITS expression
for this purpose which, however, has no straight-
forward efficient implementation. In the LOTOS
specification of Annex 2, this property is ex-
pressed in the guard of the Unique-refs process
participating in the assign a operation.

For implementation purposes, both of these
specifications would probably have to be changed
in order to include some more efficient algorithm
for the selection of a new reference number, such
as the following:

var next_ ref: reference_ type;
begin new_ ref .'= next_ ref;

active-refs .'= active_ refs + [new_ ref];
repeat
if nex t_ te l = max_ref - 1 then next_ref := 1

else next_ref := next_ref + 1
until not (next ref in active_refs) or next_ref
= new_ ref;

if next_ ref = new_ ref then * * * * * (* too many
connections *)

end

LOTOS uses an abstract data type formalism
for the definition of operations related to interac-
tion parameters and "state variables", represented
as process parameters. This formalism favors an
assertional specification style. On the other hand,
the present version of LOTOS [27] lacks abbrevia-
tions for defining simple data structures, e.g. the
equivalent of Pascal RECORDS, ARRAYS, and
enumeration types. Such abbreviations [23] have
already been used in Annex 2 in order to avoid
unreasonably lengthy and trivial text in the speci-
fication. The latest version of SDL [15] also in-
cludes an abstract data type formalism, and pre-
defined abbreviations for records and array data

G. v. Bochmann / Formal description techniques 349

structures. SDL also allows the declaration of
variables and the use of assignment statements, in
contrast to LOTOS which has the flavor of a
functional language.

An example related to the use of LOTOS' ab-
stract data type formalism is the PDU buffer of
the Map module. The Estelle specification defines
an array with space for one PDU per kind of
PDU. This form of specification was chosen in
order to simplify the description where DT PDUs
can be overtaken by AK and DR PDUs, and still
to avoid the complexity of defining a PDU buffer
containing arbitrarily many PDUs. The LOTOS
specification defines such an unlimited PDU
buffer using the string concept, a predefined ab-
stract data type. An equivalent specification in
Estelle would require an "algorithmical" defini-
tion of a queue which usually leads to some imple-
mentation-oriented choices. Examples of "asser-
tional" and "algorithmical" queue specifications
can be found in [21].

It is important to note that Lotos does not
preclude algorithmic specifications. For imple-
mentation purposes, for instance, the Unique_ refs
process of Annex 2 could be replaced by the
following definition which is similar to the Pascal
algorithm above and allows for efficient imple-
mentation as discussed in [31]:
process Unique_refs [a, t]

(ref_ set: ref_ set_ sort,
next_ ref: reference_ sort): noexit :=

a ?NC_id: NCEP_id_sort
?T_ suf: T_suffix_sort
?EP_id: TCEP_id_ sort
?PDU: p_info
?remote_ N_ addr: N address_ sort
!next_ ref
?d: direction ?accepted: Bool;
find_ next-ref [a, t] (Insert (next_ ref, ref_ set),

next_ ref, next_ ref)
[] * * * * * (* termination *)
where process find_ next_ ref [a, t]

(ref-set: ref_ set_sort,
ref: reference_ sort,
last-ref: reference_sort): noexit-'=

([ref eq max_ref] --* exit(l)
[] [not(ref eq max_ref)] ---, exit(succ(ref)))

>> accept r: reference_sort in
([r Not_ In ref_ set] ~ Unique_ refs [a, t]

(ref_ set,r)
[] [r eq l a s t ref] --, * * * * * (* too many

connections *)

[] [r In ref_set] ~ find_next_ref(ref_set, r,
last_ref))

end proc end proc

4. 4. Process Structures

4.4.1. Static and Dynamic Structures
The Estelle module instances and the SDL

processes (in the following simply called
"processes") usually represent a somehow stable
processing entity. They can naturally be mapped
to implementation structures, e.g. "tasks" in oper-
ating systems or Ada programs, or "processes" in
Modula. A given specification may either use the
process creation and deletion facilities of the lan-
guage for creating dynamically changing process
structures, or use a static structure of processes
which can be established during the "initialiTa-
tion" phase. This latter approach has been taken
in the example Transport protocol specifications.
The static part of the specification structures is
shown in Figs. 2-5.

A specification structure with dynamically
created processes has been taken in the EsteUe
Transport protocol specification of [24]. Here the
protocol entity module creates a new AP_closed
submodule (called General-TPM_body in [24])for
each new connection to be established. The created
AP_closed submodule looks after the connection
establishment phase and is replaced by a class-
specific submodu le A P _ o p e n _ i (called
class_i_ TPM_body) which looks after the data
transfer and disconnection phase according to the
selected protocol class. The latter submodule is
deleted at the end of the disconnection phase.

In LOTOS, the dynamic invocation of modules
is an essential feature, since it is the only mecha-
nism in the language for describing loops. For
instance, the T 5 transition in the AP_open process
ends with the invocation of a new version of an
AP-open process replacing the exiting one. Dy-
namic process creation is used by the Map module
which creates a PDU_handler process for each
new connection. This substructure within the Map
module could not be used for the EsteUe specifica-
tion since one module (here the Map) requires
information concerning multiplexing for several
connections. In the LOTOS specification of An-
nex 2, this information is shared among the dif-
lent submodules through the global gates a, t, ps,
and pr.

In SDL, the possible module structuring meth-

350 G. v. Bochmann / Formal description techniques

ods are similar to those of Estelle. For instance,
the signal routes R2, R3 and R4 shown in Fig. 4
correspond to the connections shown in Fig. 2.
However, an important difference is the fact that,
in SDL, the destination module (i.e. SDL process)
must sometimes be addressed by its identifier (or
name), while in EsteUe the local name of the
interaction point of the sending module is always
used for this purpose. The destination modules is
determined indirectly through the interconnection
structure between the Estelle modules. This allows
for a more modular specification style, since the
sending module does not need to know the name
of the destination. In the SDL example of Annex
3, this difference requires for instance three ad-
ditional variables in the A P process, and corre-
sponding parameters in the interactions which are
used for providing the identity of the sending or
receiving processes.

4. 4. 2. Constraint-oriented Process Structures
The multi-way rendezvous interaction provided

by LOTOS is a very powerful mechanism which
allows the specification of an interaction involving
more than two processes. Each of the processes
may add its own constraints for the interaction,
such as conditions about parameter values or par-
ticular ordering between different interactions. A
simple example is the "assign" interaction at the a
gate in Annex 2 which involves the following
processes: One A P process (order constraint), the
Map process (no constraint), the Unique_ refs pro-
cess (constraint on local_ref parameter), and one
NC_handler process (constraint on remote Net-
work address in PDU parameter). All constraints
must be satisfied for such an interaction to occur.

The use of constraint-oriented process struc-
tures for LOTOS specifications has been advoc-
ated in [37,17] and is systematically applied in
[28]. The idea is related to path expressions [14]
which also allow the separate specification of con-
straints on the access of shared ressources, and the
order in which the user processes wish to access
these ressources. As shown by a comparison of
Fig. 3 with Fig. 2, the constraint-oriented specifi-
cation style provided by LOTOS, combined with
the introduction of internal events at the gates a,
t, ps and pr, leads to a quite modular specifica-
tion structure.

5. C o n c l u d i n g R e m a r k s

Implementations in software or hardware are
usually obtained through a process of step-wise
refinement which leads from requirements specifi-
cations, possibly through several stages of design
or implementation specifications, to the final
product. An important attribute of a specification
language is its ability to express abstract specifica-
tion which can be used as requirement or design
specification without implying any design or im-
plementation choices which would be left open at
that stage.

The following properties of LOTOS make it
particularly suitable for writing abstract specifica-
tions:
- assertional specification (see Section 4.3),
- synchronous communication (see Section 4.1),
-process structure without an implementation

model (see Section 4.4.1), and
- multi-way rendezvous interactions, allowing a

constraint-oriented specification style (see Sec-
tion 4.4.2)
On the other hand, these same properties also

make it more difficult to generate implementa-
tions from LOTOS specifications, as compared to
specifications written in Estelle or SDL. In fact,
the assertional parts of specifications must be
replaced by an equivalent algorithmical part in
order to proceed to implementation. The imple-
mentation of the queued inter-module communi-
cation of Estelle and SDL can be implemented in
a straightforward manner by message passing
primitives within a multi-programming operating
system or a truly distributed system; the imple-
mentation of rendezvous is more complex in such
environments. The mapping of SDL and Estelle
modules into software structures can be per-
formed in different manners. Each implementa-
tion support environment for these languages [4]
usually provides such a mapping. In the case of
LOTOS, it seems necessary to provide several
different mappings which are selected depending
on the particular specification structure.

The example specifications of the simplified
Transport protocol in the annexes show that
specifications with similar structure can be written
using the different FDTs, Estelle, LOTOS and
SDL. However, these examples also indicate the
important differences mentioned above. In fact, it

G. v. Bochmann / Formal description techniques 351

seems that these languages emphasize different
stages within the implementation process. While
LOTOS is oriented towards abstract specifica-
tions, Estelle and SDL specifications tend to be
closer to implementation.

The usefulness of a specification language not
only depends on its ability to express the systems
properties at the appropriate level of detail, but
also on the availability of tools for the develop-
ment of specifications, their validation and imple-
mentation. The development of such tools for
these languages, which are still relatively new, is
an area of much activity [4]. Further experience
with these languages and related tools is necessary

for obtaining a complete evaluation of the lan-
guages.

Acknowledgment

The author would like to thank many people,
and in particular Michel Deslauriers and Daniel
Ouimet, who contributed to improving various
versions of the example specifications. The origi-
nal version of this paper was written in 1986-87
during a sabbatical year at Siemens AG, Munich,
FRG. Financial support from the Natural Scien-
ces and Engineering Research Council of Canada
is also acknowledged.

Annex 1. Simplified Transport Protocol Specification in Estelle

Author: G. v. Bochmann (Originally written February 1984, updated January 1987 and March 1989)

specification simple_TP;

default individual queue; (* all queues are individual by default *)

const maxdata = any integer;
(* the maximum size of any piece of data

that the specification may handle *)

max TCEP id - any integer;
max NCEP id = any integer;
max--T suffix = any integer;

type

octet = 0 .. 255;

len_type - 0 .. maxdata;

data_type = record
1 : len_type; (* length of data *)

d : array [i .. maxdata] of octet;

end;

(* the standard routines for *******)

(* the actual data *)

(*** Definition of Transport Service Primitives ***)
**

option_type = ...; (* expedited data, etc. *)

options_type = set of option_type;
reason type = (TS user initiated, error, procedure_error (* etc. *)

N address_type = ...;

T suffix_type = 1..max T_suffix;

T address type - record
N_prefix : N_address_type;

T_suffix : T_suffix type;

end;

seq_number_type = 0 .. 127;

credit type = 0..15;

) ;

352 G. v. Bochmann / Formal description techniques

channel TCEP_primitives (user, provider);
by user :

TCONreq (dest_address : T_address_type;
proposed_options : options_type);

(* connect request *)
TCONresp (accepted_options : options_type);

(* connect response *)
TDISreq ; (* disconnect request *)
TDATAreq (TS_user__data : data_type;

EoSDU : boolean); (* sending data *)
U_READY (credits : credit_type);

(* ready for n additional blocks *)
by provider :

TCONind (source_address : T_address_type;
proposed_options : options_type);

(* connect indication *)
TCONconf (accepted_options : options_type);

(* connect confirmation *)
TDISind (DIS_reason : reason_type);

(* disconnect indication *)
TDISconf; (* connection is terminated *)
TDATAind (TS_user_data : data_type;

EoSDU : boolean); (* receiving data *)
READY; (* ready for one additional block *)

(* Definition of Network Service Primitives ***)
**

channel NCEP__primitives (user, provider);
(* similar to TCEP primitives, in particular the primitives *)
by user : NDATAreq (NSDU_fragment : data_type;

is_last_fragment of NSDU : boolean); (* sending data *)
by provider: NDATAind (NSDU_fragment : data_type;

is_last_fragment of NSDU : boolean); (* receiving data *)

(*** Definition of the Transport Entity ***)
**

type NCEP_id_type = l..max_NCEP_id;
TCEP_id_type = l..max_TCEP_id;

module TP_entity;
ip TS : array [T suffix_type, TCEP id_type] of

TCEP_primitives (provider);
NS : array [NCEP_id_type] of NCEP_primitives (user);

end;

body TP_body for TP_entity;

(*** Definitions Internal to the Transport Entity ***)
**

const
max ref = 65535; (* 2"'16 - 1 *)

type

reference_type = 0 .. max_ref (* 0 .. (2"'16 - i) *);
order_type m (first, fast, normal, destructive);

TPDU_code_type = (CR, CC, DR, DC, DT, AK, undefined_code);

G. v. Bochmann / Formal description techniques 353

TPDU_and_control_information - record
(* control information *)

full : boolean;
order : order_type;
peer address : T address type;

(* fields of TPDU *)
credit value : credit_type; (* used for CR, CC, AK *)

dest ref : reference type;
(* used for CC, DR, DC, DT (class 2 only),

EDT, AK, EAK, ERR *)
source ref : reference_type; (* used for CR, CC, DR, DC *)
user_data : (* optional *) data_type; (* see TS *)

(* used for CR, CC, DR (not in this version
of the protocol), DT, EDT *)

case kind : TPDU_code_type of
CR, CC : (

options_ind : options_type; (* see TS *)
TSAP id calling,
TSAP id called (* used only for CR *) : T_suffix_type);

DR : (
is last__PDU : boolean; (* control information *)
disconnect_reason : reason_type);

DC :();
DT : (

send_sequence : seq_number_type;
end of TSDU : boolean);

AK : (
expected_send_sequence : seq_number_type);

undefined code : () ;
end;

channel PDU and control (protocol, mapping);
by protocol, mapping :

transfer (PDU : TPDU and control_information);
terminated;

by mapping :
ready; (* ready for one more block *)

(* end PDU and control *)

(*** Definition of the Map Module ***)

module Map systemactivity ;
ip AP : array [T_suffixtype, TCEP_id_type] of

PDU and control (mapping);
NS : array [NCEP id type] of NCEP_.primitives (user);

end;

body Mapbody for Map;

type
reference set type ~ set of reference_type;

var
TC : array IT_suffix type, TCEP_id type] of record

local ref : reference type;
remote ref : reference_type;
assigned_NC : (* optional *) NCEP id type;
PDU_buffer : array [TPDU__code__type] of

TPDU and_cont rol in format ion

end;

354 G. o. Bochmann / Formal description techniques

NC : array [NCEP id type] of record
remote_N_addr : N_address_type; (* see NS *)
end;

active_references : reference set type;

(* The following variables are not contributing
to the state space of the module *)

T_suf : T_suffix_type; EP_id : TCEP id type;
(* used in "when AP[T_suf, EP id]..." clause to receive on any value

of T suf and EP id *)
NC_id : NCEP_id_type;
(* used in "when NS[NC_id]..." clause to receive on any value of NC id. *)

(*** Definition of Local Functions and Procedures ***)

function exists_TC (NC_id : NCEP id type;
ref : reference_type) : boolean;

primitive;
(* determines whether a TC already exists, i.e. such that

TC[TC].assigned__NC = NC_id and TC[TC].Iocal ref = ref *)

function find T suffix (NC_id : NCEP id type;
ref : reference_type) : T_suffix type;

primitive;

function find EP id (NC_id : NCEP id type;
ref : reference_type) : TCEP id type;

primitive;

procedure assign__new_ref (vat new ref : reference_type;
vat active_refs : reference set type);

var ref : reference_type;
begin

if exist ref : reference_type
suchthat not(ref in active_refs)

then begin new ref := ref;
active_refs := active refs + [new_ref];

end
else ***** (* too many connections *)

end;

function form T address (N_address: N_address_type;
T_suffix: T_suffix_type) : T_address_type;

primitive;
(* forms a Transport address from N_address and T_suffix. *)

procedure assign_new_TCEP_id (vat new EP id : TCEP id type);
primitive;

function order constraint (T_suf : T_suffix_type;
EP_id : TCEP id type;
kind : TPDU code type) : boolean;

var OK : boolean;
begin

OK := true;
with TC[T_suf, EP_id] do all k : TPDU_code_type do

if (k <> kind)
and PDU buffer[k].full
and (PDU_buffer[k].order < PDU_buffer[kind].order)

then OK :m false;
order constraint := OK;
end;

procedure close and clear buffers
(T_suf : T_suffixSype; EP_id : TCEP id type);

const undefined = any NCEP id type;

G. v. Bochmann / Formal description techniques 355

var kind : TPDU_code_type;
begin with TC[T_suf, EP_id] do begin

assigned_NC := undefined;
active_references := active_references - [local_ref];
for kind := CR to AK do PDU buffer [kind]. full := false;
end end;

procedure encode_PDU (PDU : TPDU and control_information;
d: data_type);

primitive;
procedure decode (d: data_type;

PDU : TPDU and control_information);
primitive;

©

Q

initialize
var kind : TPDU_code_type;
begin
all T_suf : T_suffix_type do
all EP_id : TCEP id type do begin

close and clear_buffers (T suf, EP_id);
with TC[T_suf, EP id] do

begin
for kind := CR to AK do

PDU_buffer[kind].is_last_PDU := false;
PDU buffer[DC].is last PDU := true;
end;

end;
end;

(*** Transitions of the Map Module ***)

(* handling interactions from the AP module *)
trans
when AP[T_suf, EP_id].transfer (* PDU *)

(* this input may occur with ANY value of T_suf, EP_id *)
begin

TC[T_suf, EP_id]. PDU_buffer [PDU.kind] :- PDU;
with TC[T_suf, EP_id]. PDU_buffer [PDU.kind] do begin

full :z true;
end end;

when AP [T_suf, EP_id].terminated
begin close and clear_buffers (T_suf, EP_id) end;

(* assignment of Network connections for outgoing calls *)
trans
any T suf : T_suffix_type;

EP id : TCEP id type;
NC id : NCEP id type do
provided TC[T_suf, EP_id].PDU_buffer[CR].full

and (TC[T_suf, EP_id].PDU_buffer [CR].
peer_address.N_prefix =

NC[NC_id].remote N addr)
begin with TC[T_suf, EP id], NC[NC id] do begin

assigned_NC := NC_id;
assign new ref (local_ref, active references);

end end;

(* similarly: in the case that no suitable Network
connection exists, a TDISind must be returned to the user; this
may be initiated by sending a DR PDU to the AP module *)

(* send a TPDU *)

356 G. v. Bochmann / Formal description techniques

©

©

trans
any NC_id : NCEP id type;

T_suf : T_suffix_type;
EP_id : TCEP id type;
kind : TPDU_code_type do
provided TC [T_suf, EP_id] .PDU_buffer [kind] . full

and (TC[T_suf, EP_id] .assigned_NC = NC_id)
(* and flow control to Network ready *)

and order_constraint (T_suf, EP_id, kind)
var NSDU : data_type;

begin with TC[T_suf, EP_id] do begin
with PDU_buffer [kind] do begin

if kind = CR
then begin

TSAP id calling := T_suf;
TSAP id called := peer_address.T_suffix;
dest ref := 0;
end

else dest_ref :m TC[T_suf, EP_id] .remote_ref;
if kind in [CR, CC, DR, DC]

then source ref := TC[T_suf, EP id] .local ref;
end;

encode_PDU (PDU_buffer [kind], NSDU);
output NS[NC_id]. NDATAreq (NSDU, true);
PDU buffer[kind] .full := false; L- Q if PDU_buffer[kind] .order = destructive

then all k : TPDU_code_type do PDU buffer[k].full :=
false;

if (kind = DC) or
((kind = DR) and PDU_buffer [kind] .is_last_PDU)

then begin
close_and_clear buffers (T_suf, EP id);
output AP [T_suf, EP_id]. terminated
end;

G I if kind = DT
then output AP [T_suf, EP_id] . ready;
end end;

(* handling of incoming PDU's *)
trans
when NS[NC_id]. NDATAind

(* NSDU_fragment, is_last_fragment of NSDU *)
(* Assumption: the fragment contains exactly one TSDU *)
(* Note: flow control to the Transport entity is always ready *)

var
received PDU : TPDU and control information;
(* used to decode NSDU fragments into received_PDU *)

begin
decode (NSDU_fragment, received_PDU);
with received PDU do begin

if exists_TC (NC_id, dest_ref)
then begin

T_suf := find T suffix (NC_id, dest_ref);
EP_id := find EP id (NC__id, dest_ref) end

else (* a new TC must be created if PDU is CR *)
if kind = CR
then begin

peer_address := form T address
(NC[NC_id].remote N addr, TSAP id calling);

(* Assumption: the address is valid,
and another connection to that address
can be supported *)

T suf :i TSAP id called;

G. v. Bochmann / Formal description techniques 357

©
assign_new_TCEP_id (EP_id); (* such that

not AP[T_suf, EP_id].in_use *)
with TC[T_suf, EP_id] do begin

assig n new ref (local_ref, active_references);
remote_ref :- source_ref;
assigned_NC := NC_id;
end;

end
else (* error *);

case kind of
CR: (* error *);
CC : TC[T_suf, EP_id].remote_ref :- source_tel;
DR, DC,DT,AK: ;

end;
output AP [T_suf, EP_id].transfer(received_PDU) ;
end;

end;

end (* Map_body *);

(*** Definition of the AP Module ***)

module AP_type systemactivity;
ip TS : TCEP_primitives (provider);

Map : PDU and control (protocol) ;
end;

body AP_body for AP_type;

var
opt : options_type;
TRseq,
TSseq : seq_number_type;
R__credit,
S_credit : credit_type;
user_ready : integer;
map_ready : boolean;
state closed, wait for CC, wait for TCONresp,

open, wait for DC, closing;

stateset
any_state = [closed, wait for CC, wait for TCONresp,

open, wait for DC, closing];

(*** Definition of Local Functions and Procedures ***)

function impl_choice : boolean;
primitive;

(* PDU definitions: The following functions have merely the role
of assembling their parameters into a record data structure *)

function CR_PDU (to_adr : T_address_type;
o : options_type;
c : seq_number_type)

: TPDU_andcontrol_information;
vat PDU : TPDU and control_information;
begin

with PDU do begin
kind := CR; peer_address := to_adr;
options_ind := o; credit_value := c;

358

@

@

G. v. Bochmann / Formal description techniques

order := first;

CR PDU := PDU;

end;

end;

function CC_PDU (o : options_type;
c : seq number_type)

: TPDU and control_information;

var PDU : TPDU and control information;

begin

with PDU do begin
kind := CC; options_ind := o;

credit value := c; order := first; end;

CC PDU := PDU;

end;

function DR PDU (r : reason_type;

last PDU : boolean)

: TPDU_and_control_information;

var PDU : TPDU_and_control_information;

begin

with PDU do begin

kind := DR; disconnect reason := r;

is_last_PDU := last_PDU; order := destructive; end;

DR PDU := PDU;

end;

function DC_PDU : TPDU and control_information;

var PDU : TPDU_and_control_information;

begin

with PDU do begin

kind := DC; order := destructive;

DC PDU := PDU;

end;

end;

function DT_PDU (s : seq_number_type;

d : data_type;

e : boolean)
: TPDU_and_control_information;

vat PDU : TPDU_and_control_information;

begin

with PDU do begin

kind := DT; send_sequence := s;

user data := d; end of TSDU := e;

order := normal; end;

DT PDU := PDU;

end;

function AK_PDU (s : seq_number_type;

c : seq_number_type)
: TPDU_and_control_information;

var PDU : TPDU and control_information;

begin
with PDU do begin

kind :- AK; expected_send_sequence := s;

credit_value := c; order :E fast; end;

AK PDU := PDU;

end;

initialize to closed begin end;

(*** Transitions of the AP Module ***)

(*** Connection Establishment ***)

G. v. Bochmann / Formal description techniques 359

©

©

©

©

©

@

©

trans
when TS.TCONreq (* dest_address, proposed_options *)

from closed to wait for CC
begin

opt :- proposed options;
output Map.transfer

(CR_PDU (dest_address, opt, R_credit));
end;

when Map.transfer (* PDU *) provided (PDU.kind = CC)
and (PDU.options_ind <m opt)

from wait_for_CC to open
begin

opt :m PDU.options_ind;
TRseq :- 0;
TSseq :- 0;
S_credit :- PDU.credit_value;
output TS.TCONconf (opt);
end;

when Map.transfer (* PDU *) provided (PDU.kind - CC)
and not (PDU.options_ind <= opt)

from wait for CC to wait for DC
begin

output TS.TDISind (procedure_error);
output Map.transfer (DR PDU (procedure_error, false));
end;

when Map.transfer provided PDU.kind = DR
from wait for CC

to closed
begin

output TS.TDISind (PDU.disconnect_reason);
output Map.terminated;
end;

when Map.transfer (* PDU *) provided (PDU.kind = CR)
and impl_choice (* assumption: requested options

are supported by implementation.
The opposite case is not considered here;
it could be described by another transition *)

from closed to wait for TCONresp
begin

opt := PDU.options_ind;
S_credit :- PDU.credit_value;
output TS.TCONind (PDU.peer_address, opt);
end;

when TS.TCONresp (* accepted options *)
from wait for TCONresp to open
provided accepted options <= opt
begin

opt := accepted_options;
TRseq :- 0;
TSseq :m 0;
output Map.transfer (CC_PDU (opt, R_credit));
end;

(* refusal by the user of a connection indication *)
when TS.TDISreq

from wait for TCONresp
to closing
begin

output Map.transfer (DR_PDU (TS_user_initiated, true));
end;

360 G. v. Bochmann / Formal description techniques

©

@

oi

©

©

@

(*** Connection Termination ***)

(* disconnect initiative by local user *)
when TS.TDISreq

from open
to wait for DC
begin

output Map.transfer
(DR_PDU (TS_user_initiated, false));

end;

when Map.transfer provided PDU.kind = DC
from wait for DC to closed

begin
output Map.terminated;
output TS. TDISconf;

end;

(* disconnect collision *)
when Map.transfer provided PDU.kind = DR

from wait for DC to closed
begin

output Map.terminated
end;

(* disconnect initiative by Transport entity *)

trans
any reason : reason_type do
from open to wait for DC

provided reason <> TS user initiated
begin

output TS.TDISind (reason);
output Map.transfer (DR_PDU (reason, false));

end;
(* remote disconnect initiative *)
trans
when Map.transfer provided PDU.kind = DR

from open
to closing
begin

output TS.TDISind (PDU.disconnect reason);
output Map.transfer (DC_PDU);
end;

when Map. terminated
from closing to closed

begin
output TS. TDISconf

end;

©

(*** Normal Data Transfer ***)

(* sending data *)
trans
when TS.TDATAreq (* TS_user_data, EoSDU ~)

(* Note: the user determines the size of the DT PDU
which will contain the complete TDATAreq data fragment *)

provided S_credit > 0
from open to same

begin
S_credit :- S_credit - i;
output Map.transfer (DT_PDU (TSseq, TS user_data, EoSDU));

G. v. Bochmann / Formal description techniques 361

©

©l
@

©

©I

TSseq := (TSseq + 1) mod 128;
map_ready := false;
end;

(* receiving data *)
trans
when Map.transfer (* PDU *)

provided PDU.kind ffi DT
from open to same

begin
if (Rcredit <> 0) and (PDU.send_sequence ffi TRseq)
then begin

TRseq := (TRseq + 1) mod 128;
R credit := R credit - 1;
output TS.TDATAind (PDU.user_data, PDU.end of TSDU);
end

else (* error *)
end;

(* acknowledgements *)

trans
when TS. U READY (* credits *)

begin R_credit :- R_credit + credits end;

trans
from open to same

begin
output Map.transfer (AK_PDU (TRseq, R_credit));
end;

trans
when Map.transfer (* PDU *)

from open to same

begin

provided PDU.kind - AK

vat new_credit : integer;

if TSseq < PDU.expected_send_sequence
then new_credit := PDU.credit_value + PDU.expectedsend_sequence

- (TSseq + 128)
else new_credit :- PDU.credit_value + PDU.expectedsend_sequence

- TSseq;
if (new_credit >-0) and (new_credit <= 15)
then S credit :- new credit
else (* error *);

end;

when Map. ready
begin map_ready := true end;

trans
provided map ready and (S credit > 0)

begin output TS.READY end;

end; (* AP_body *)

(*** Part of Transport Entity Body: Creation of Submodules ***)

modvar
m : Map;
aps : array IT_suffix_type, TCEP_id_type] of AP_type;

362 G. v. Bochmann / Formal description techniques

initialize begin
init m with Map body;
all T suf : T_suffix_type do
all EP id : TCEP id .type do begin

ini~ aps [T_suf, EP_id] with AP_body;
connect m.AP [T_suf, EP_id] to aps [T_suf, EP_id] . Map;
attach TS [T_suf, EP id] to aps [T_suf, EP_id] . TS;
end;

all NC_id : NCEP_id_type do
attach NS [NC_id] to m . NS [NC_id];

end;

end; (* TP_body *)

end. (* of specification *)

Annex 2. Simplified Transport Protocol Specification in LOTOS

Author: G. v. Bochmann (April 1987, revised July 1988 and March 1989)

(*

Notes:

(1) The abbreviated notations described in "Potential Enhancements to LOTOS"
(ISO 97/21 N1540) are used for the description of data types.
This simplifies the notation, compared with what is allowed according

to standard Lotos.

(2) Certain parts of the protocol, in particular error cases are not

completed. These parts are indicated by *****.

(3) A corresponding (complete) specification of this simplified Transport
protocol in standard LOTOS is available from the author.

*)

specification simple_TP [TS, NS] (tc ids : TCid_set, nc_ids : NCid_set)
: noexit

(* Library definitions *)
library

Boolean, Set, String, OctetString, DecNatRepr,
NaturalNumber (* assumed to include the minus operation

and the constants 1 and 15 *),
Element, BasicNonEmptyString

endlib

(*** Global Type Definitions ***)

type T_suffix_type is Boolean
sorts T suffix sort
opns _eq_ : T_suffix_sort, T_suffix_sort -> Bool

T suffix 1 : -> T suffix sort
(* assumed to include the eq equations *)

endtype

type N_address_type is
sorts N_addresssort
opns find_remote N addr :

endtype

-> N_address_sort

G. v. Bochmann / Formal description techniques 363

type T_address_sort is Tuple make T_addr comp (* abbreviated notation *)
N prefix : N_address sort,
T_suffix : T_suffix_sort

(* can be written in standard Lotos as
type T_address__sort is N_addresstype, T_suffix_type

sorts T_addresssort
opns

make T_addr : N_address_sort, T_suffix_sort -> T_adc%ress_sort
Nprefix : T_address_sort -> N_address_sort
Tsuffix : T_address_sort -> T_suffix_sort

eqns forall N_p : N_address_sort, T_s : T_suffix_sort
ofsort N_address_sort

N_prefix (make T_addr (N p, T s)) m N_p
ofsort T_suffix_sort

T_suffix (make T_addr (N_p, T_s)) = T_s
*)

endtype

type reason_type is
sorts reason sort
opns

TS_user initiated : -> reason_sort
remote3nitiated : -> reason_sort
(* ***** *)

endtype

type direction is
sorts direction
opns

up : -> direction
down : -> direction

endtype

type credit_type is DecNatRepr
renamedby sortnames credit_sort for Nat

endtype

type TCEP_id_type is
sorts TCEP id sort
(* for execution, some constant values must be defined *)

endtype

type option_type is
sorts option_sort
opns expedited_data : -> optionsort

(* ***** *)

endtype

type options_sort is SetOf optiontype (* abbreviated notation *)
(* can be written in standard Lotos as
type options_sort 1 is Set

actualizedby optiontype, Boolean,
using sortnames option sort for Element

Bool for FBool
endtype
type optionstype is options_sort_l

renamedby sortnames options_sort for Set
*)

endtype

(*** Definition of Service Primitives ***)
**

(* TCEP_primitives, using abbreviated notation as for T address_sort; "for user"

364 G. v. Bochmann / Formal description techniques

means that this service primitive is created by the service user only *)

type TCONreq is Tuple make_TCONreq (* for user *) comp
dest_address : T_addresssort,
proposed options : options_sort

endtype

type TCONind is Tuple make TCONind comp
source_address : T_address_sort,
proposed options : options_sort

endtype

type TCONEesp is Tuple make_TCONresp (* for user *) comp
accepted options : option_sort

endtype

type TCONconf is Tuple make TCONconf comp
accepted options : options_sort

endtype

type TDISreq is
sorts TDISEeq
opns

make_TDISreq : -> TDISreq (* for user *)
endtype

type TDISind is Tuple make TDISind comp
DIS_reason : reason_sort

endtype

type TDATAreq is Tuple make_TDATAreq (* for user *) comp
TS_user_data : data_sort,
EoTSDU : boolean

endtype

type TDATAind is Tuple make_TDATAind comp
TS_user_data : data_sort,
EoTSDU : boolean

endtype

type U_READY is Tuple make_U_READY (* for user *) comp
credits : credit or seq_sort

endtype

(* NCEP primitives *)

type NDATAreq is Tuple make_NDATAreq comp
NS_user_data : OctetString,
EoNSDU : Bool

endtype

type NDATAind is Tuple make NDATAind comp
NS user data : OctetString,
EoNSDU : Bool

endtype

(*** Definition of Transport Entity ***)
**

type'NCEP id type is
sorts NCEP id sort
(* for execution, some constant values must be defined *)

endtype

G. o. Bochmann / Formal description techniques 365

type NCid set is SetOf NCEP id sort
endtype

(* abbreviated notation *)

type TCid_set is SetOf TCid_pair
endtype

(* abbreviated notation *)

type TCid_pair is Tuple make T id comp
compl : T suffix_sort,
comp2 : TCEP id sort

endtype

(* abbreviated notation *)

type TCid__pair__set is SetOf TCidset
endtype

(* abbreviated notation *)

behavior TP_entity ITS, NS] (tc_ids, nc_ids)
where

process TP_entity ITS, NS] (tc_ids : TCid_set, nc_ids : NCid_set) : noexit :=

(* Notes :

(1) The TP entity contains a single Map process which contains a
PDU_handler per active Transport connection.

(2) A transport connection is identified either by the pair of
T_suffix and TCEP identifier or by the pair NCEP identifier and
local reference.

(3) There is one AP_closed process (or AP_open, AP disc, AP_wait for DC
into which the AP_closed process transforms} per pair of T suffix and
TCEP identifier.

(4) There is one NC_manager process per NCEP identifier (i.e.
per Network connection).

(5) The following types of parameters are exchanged during the
interactions at the gates :

TS : T suf : T suffix sort
EP_id : TCEP id sort
TCONreq I TCONind I TCONresp I TCONconf I TDISreq I *** etc.

a : NC_id : NCEP id sort
T suf : T suffix sort
EP id : TCEP id sort
PDU : p_info
N_addr: N_address_sort
local ref : reference sort
d : direction
accepted : boolean

t : T suf : T suffix sort
E9 id : TCEP id sort
NC id : NCEP id sort
ref : reference sort

ps : T_suf : T_suffix sort
EP id : TCEP id sort
PDU : p_info

pr : T_suf : T_suffix_sort
EP id : TCEP id sort
PDU : p_info

366 G. v. Bochmann / Formal description techniques

NS : NC id : NCEP id sort
NDATA_sort I *****

(6) A single Network service access point (NSAP) is assumed.
*)

hide pr,ps,a,t in

(AP_modules ITS, pr, ps, a, t] (tc_ids)
l[pr,ps,a,t] I

Map INS, pr, ps, a, t]
I [a , t] l

NC_managers[a,t](nc_ids)
f [a , t] i
Unique_refs [a, t] ({} of ref set_sort)

)

where

process AP modules ITS, pr, ps, a, t] (tc_ids : TCid_set) : noexit :=
choice tc_id : TCid pair [] [tc_id IsIn tc_ids] ->

(AP_closed ITS, pr, ps, a, t]

(compl (tc_id), comp2 (tc_id), 0 of credit_sort)
III
i; AP_modules ITS, pr, ps, a, t] (Remove (tc_id, tc ids)))

endproc

process NC_managers Is, t] (nc_ids : NCid_set) : noexit :=
choice NC id : NCEP id sort [] [NC id IsIn nc_ids] ->

(NC_manager [a, t] (NC_id, find_remote N addr)
III
i; NC_managers [a, t] (Remove (NC id, nc_ids)))

endproc

(*** Type Definitions Internal to the Transport Entity ***)

type reference_type is NaturalNumber
renamedby sortnames reference sort for Nat

endtype

type ref set sort is SetOf reference sort
endtype

(* abbreviated notation *)

type seqnumber_type_l is DecNatRepr
renamedby sortnames seq_number_sort

endtype
for Nat

type seq_number_type is seq_number_type_l, credit_type
(* has properties of natural numbers; modulo arithmetic and the minus

operation are defined; conversion to credit type is required
for type checking consistency of expressions describing the
reception of AK PDU's *)

opns
convert to credit : seq_number_sort -> credit sort
Pred : seq_number_sort -> seq__number_sort

- : seq_number_sort, seq_number_sort-> seq._number_sort
_mod : seq_number_sort, seq_number sort-> seq~_number_sort
128 : -> seq number_sort
1 : -> seq number_sort

equs forall m, n : seq_number_sort
of sort credit_sort

convert to credit (0) - 0;
convert to credit (Succ(n)) - Succ (convert to credit (n))

G. o. Bochmann / Formal description techniques 367

G

@

endtype

ofsort seq_number_sort

Pred (Succ (m)) = m;

Succ (Pred (m)) - m;

m - 0 = m;

m - Succ (n) - Pred (m) - n;
m - Pred (n) - Succ (m) - n;

m + Pred (n) = Pred (m) + n;

m * Pred (n) = (m * n) - m;

m It n => m rood n = m;
m ge n => m mod n = (m - n} mod n;
128 z NatNum (Dec (1) ++ Dec (2) ++ Dec (8));

1 = Succ (0)

type order_type is [destructive, normal, fast, first)
(* abbreviated notation, can be written in standard Lotos

through representation as integer constants *)

endtype

(*** PDU definitions ***) (* using abbreviated notation as for T_address sort *)

type CR_PDU is Tuple CR_PDU comp
TSAP id called : T suffix_sort,

TSAP id calling : T_suffix_sort,
option_ind : options_sort,

credit_value : creditsort

endtype

type CC PDU is Tuple CC PDU comp
op[ion_ind : ~ptions_sort,

credit_value : credit_sort

endtype

type DR PDU is Tuple DR PDU comp

disconnect reason : reason sort
endtype

type DT PDU is Tuple DT PDU comp

send_sequence : seq_number_sort
user_data : data_sort

endtype

type AK PDU is Tuple AK_PDU comp
expected_send_sequence : seqnumber_sort

credit value : credit sort
endtype

type p_info is EitherOf

CRPDU, CC_PDU, DR_PDU, DC_PDU, DT_PDU, AK_PDU

endtype

(* The above abbreviations can be written in standard Lotos
in the following form:

type p_info is Boolean
sorts p info

opns
IsCR_PDU : p_info -> Bool
IsCC_PDU : p_info -> Bool
IsDR__PDU : p_info -> Bool
IsDC__PDU : p_info -> Bool
IsDT_PDU : p_info -> Bool
IsAK_PDU : p_info -> Bool

endtype

368 G. v. Bochmann / Formal description techniques

type CR_PDU is T_suffix_type, options_type, credit_type, p_info
opns

CR PDU

TSAP id called :
TSAP id calling :
option_ind
credit value

T_suffix_sort, T_suffix_sort,
options_sort, credit_sort -> p_info
p_info -> T_suffix_sort
p_info -> T_suffix_sort
p_info -> options_sort
p_info -> credit_sort

eqns forall Called,
Cred

Calling : T_suffix_sort,
: credit sort

Opt : options_sort,

ofsort T suffix sort
TSAP id called (CR_PDU (Called, Calling, Opt, Cred)) = Called;
TSAP id calling (CR_PDU (Called, Calling, Opt, Cred)) = Calling

ofsort options_sort
option_ind (CR_PDU (Called, Calling, Opt, Cred)) = Opt

ofsort credit sort
credit_value (CR_PDU (Called, Calling, Opt, Cred)) = Cred

ofsort Bool
IsCR_PDU (CR_PDU (Called, Calling, Opt, Cred)) = true;
IsDC_PDU (CR_PDU (Called, Calling, Opt, Cred)) = false

endtype

type CC_PDU is ***** etc.
*)

type PDU_type is CR_PDU, CC_PDU, DR_PDU, DC_PDU, DT_PDU, AK_PDU, reference_type
sorts PDU sort
opns

decode : OctetString -> PDU__sort
encode : PDU sort -> OctetString
make_PDU : p_info, reference_sort, reference_sort -> PDU_sort
source ref : PDU sort -> reference sort
dest ref : PDU sort -> reference sort
p_PDU : PDU_sort -> p_info
checks : PDU sort -> Bool
update_source ref : reference_sort, PDU__sort -> reference sort

eqns forall p : p_info, rl,r2 : reference_sort, PDU : PDU_sort

ofsort PDU sort
decode (encode (PDU)) = PDU

ofsort p_info
p_PDU (make_PDU (p, rl, r2)) = p

ofsort reference sort
dest_ref (make_PDU (p, rl, r2)) = rl;
source ref (make_PDU (p, rl, r2)) = r2;
rl ne T0 of reference_sort) => update_source_ref (rl, PDU) = rl;
rl eq (0 of reference_sort) => update_source_ref (rl, PDU)

= source ref (PDU);

(* ***** for check (verification of received PDU's) *)
endtype

type PDU buffer sort is StringOf p_info (* abbreviated notation *)
(* can be written in standard Lotos similarly to the "SetOf" construction *)
endtype

G. v. Bochmann / Formal description techniques 369

(*** Definition of the "AP Module" ***)

process AP_closed ITS, pr (* receive PDU *), ps (* send PDU *),
a (* assign *), t (* terminate *)]

(T_suf : T_suffix_sort, EP_id : TCEP id sort,
R_credit : credit_sort) : noexit :=

(* connection establishment, user initiated *)

®

@

TS !T suf !EP id ?tcr : TCONreq;
a ?NC id : NCEP id sort !T suf !EP id

!CR_PDU (T_suffix (dest_address (tcr)),
T_suf, proposed_options (tcr}, R_credit)

!N_prefix (dest_address (tcr))
?ref : reference sort !down ?accepted : Bool;
[accepted] ->
(pr !T suf !EP id ?PDU : p_info [IsCC_PDU (PDU)];

(Toption3nd_CC (PDU] IsSubsetOf proposed_options (tcr)]
->

TS !T suf !EP id
!make TCON~onf (option ind CC (PDU));

CAP_open [TS, pr, ps]
(T_suf, EP_id, option_ind_CC (PDU), 0 of seq_number_sort,

0 of seq_number_sort, R_credit, credit_value_CC (PDU))
[> AP_disc [TS, pr, ps, a, t] (T_suf, EP_id)))

[] pr !T_suf !EP_id ?PDU : p_info [IsDR PDU (PDU)];
TS !T suf !EP id

!make TDISi--nd (disconnect_reason (PDU)) ;
t (* terminate *) !T_suf !EP_id ?id : NCEP id sort

?r : reference_sort;
AP_closed ITS, pr, ps, a, t] (T_suf, EP_id, 0 of credit_sort)

(* [] [***** otherwise] -> ***** *)
}

(* [] [not accepted] -> ***** *)
)

[]
ITS !T suf !EP_id ?tsp : U_READY;
I AP_closed ITS, pr, ps, a, t] (T_suf, EP_id, R_credit + credits (tsp))

[] (* connection establishment, initiated by peer entity *)

a ?NC id : NCEP id sort !T suf !EP id ?PDU : p_info
?rem-ote_N_addr : N_address_sort ?~ef : reference_sort !up ?accepted : Bool
[IsCR_PDU (PDU) and (TSAP id called (PDU) eq T_suf}];
([accepted] ->
TS !T suf !EP id

!make TCONind (make T addr (remote N addr, TSAP id calling (PDU)),
option_ind (PDU));

TS !T suf !EP id ?tcr : TCONresp
[accepted_options (tcr) IsSubsetOf option_ind (PDU)];

ps !T_suf !EP_id
!CC_PDU (accepted_options (tcr), R_credit);

(AP_open ITS, pr, psi (T_suf, EP_id, accepted_options (tcr),
0 of seq_numbersort, 0 of seq_number_sort,
R_credit, credit_value (PDU))

[> AP disc ITS, pr, ps, a, t] (T_suf, EP_id))
}

where

process AP_open ITS, pr, ps]
(T_suf : T_suffix_sort, EP_id : TCEP id sort, opt : options_sort,

370 G. v. Bochmann / Formal description techniques

TRseq, TSseq : seq_number_sort, R_credit, S_credit : credit_sort)
: noexit :=

(* receiving data *)

®
pr !T_suf !EP_id ?PDU : p_info [IsDT_PDU (PDU)];

([(R_credit ne 0) and (send_sequence (PDU) eq TRseq)] ->
TS !T suf !EP id

!make_TDATA~nd (user_data (PDU), EoTSDU (PDU));
AP_open [TS, pr, ps] (T_suf, EP_id, opt, (TRseq + I) mod 128, TSseq,

R credit - i, S_credit)
(* [] [*~*** otherwise] ***** *)
)

[] (* receiving credits from user *)

I TS !T_suf !EP_id ?tsp : U_READY;

I AP_open [TS, pr, ps] (T_suf, EP_id, opt, TRseq, TSseq,
R_credit + credits (tsp), S_credit)

[] (* sending data *)

©
[S credit ge 1] -> (TS !T suf !EP id ?tdt : TDATAreq;
ps !T_suf !EP_id !DT_PDU (TSseq, TS_user_data (tdt), EoTSDU (tdt));
AP_open [TS, pr, ps] (T_suf, EP_id, opt, TRseq, (TSseq + i) mod 128,

R credit, S_credit - i))

[] (* receiving an AK PDU *)

©

pr !T_suf !EP_id ?PDU : p_info [IsAK_PDU (PDU)];

([TSseq it expected_send_sequence (PDU)] -> exit (TSseq +128)
[] [not (TSseq it expected_send_sequence (PDU))] -> exit (TSseq)

) >> accept s:seq_number_sort in
(let new_credit : credit sort = credit_value_AK (PDU) +

convert to credit (expected_send_sequence (PDU) - s) in
([(new_credit ge S_credit) and (new_credit le 15] ->
AP_open [TS, pr, ps]

(T_suf, EP_id, opt, TRseq, TSseq, R_credit, new_credit)
(* [] [***** otherwise] ***** *)

)))

[] (* sending an AK PDU *)

ps !T_suf !EP_id !AK_PDU (TRseq, R_credit);
AP_open [TS, pr, ps] (T_suf, EP_id, opt, TRseq, TSseq, R_credit, S_credit)

endproc (* AP_open *)

process AP_disc [TS, pr, ps, a, t] (T_suf : T_suffix_sort, EP_id : TCEP id sort)
: noexit : =

(* disconnect initiated by local user *)

Q ITS !T_suf !EP_id ?tdr : TDISreq;

I ps !T suf !EP_id !DR__PDU (TS_user_initiated);
AP_wai~ for DC [TS, pr, ps, a, t] (T_suf, EP_id)

[] (* disconnect initiated by remote entity *)

G. v. Bochmann / Formal description techniques 371

pr !T_suf !EP id ?PDU : p_info [IsDR_PDU (PDU)];
TS !T_suf !EP_id [make_TDISind (disconnect_reason (PDU));
ps !T_suf !EP_id !DCPDU;
t (* terminate *) !T_suf !EP_id ?MC_id : NCEP id sort ?ref : reference_sort;
AP_closed ITS, pr, ps, a, t] (T_suf, EP_id, 0 of credit_sort)

(* [] * * * * * *)

where

process AP_wait for DC [TS, pr, ps, a, t] (T_suf : T_suffix_sort,
EP id : TCEP id sort) : noexit :=

@l pr !T_suf !EP id ?PDU : p info [IsDC_PDU (PDU)];
t (* terminate ~) !T_suf !EP id ?id : NCEP id sort ?r : reference_sort;
AP_closed ITS, pr, ps, a, t] (T_suf, EP id, 0 of credit_sort)

[] (* other PDU's are ignored *)

pr !T_suf !EP id ?PDU : p_info [not (IsDC_PDU (PDU))];
AP_wait for DC [TS, pr, ps, a, t] (T_suf, EP_id)

endproc (* AP_wait for DC *)
endproc (* AP_disc *)
endproc (* AP_closed *)

©

(*** Definition of the "Map Module" ***)
**

process Map [MS, pr, ps, a, t] : noexit :=

(* new connection requested by the user:
if accepted, a new PDU_handler process is created *)
a ?NC_id : NCEP id sort ?T suf : T_suffix_sort ?EP id : TCEP id sort

?PDU : p info ?N_addr : N address_sort
?local ref : reference sort !down ?accepted : Bool;
([accepted] ->

(PDU_handler INS, pr, ps, t]
(NC_id, T_suf, EP_id, local_ref, 0 of reference_sort,
String (PDU) of PDU_buffer_sort)

Ill
Map [NS, pr, ps, a, t]

)
(* [] [***** otherwise] ***** *)

)
(]
(*

i f
NS

new connection requested by the remote entity:
accepted, a new PDU_handler process is created *)
?NC_id : NCEP id sort
?ndt : NDATAind [IsCR_PDU (p_PDU (decode (NS_user_data(ndt))))] ;
!NC id ?T_suf : T_suffix_sort ?EP_id : TCEP id sort
!p PDU(decode (NS_user_data(ndt))) ?N addr : N address_sort
?local ref : reference_sort !up ?accepted : Boo1;
([accepted] ->

(PDU_handler [NS, pr, ps, t]
(NC_id, T_suf, EP_id, local_ref,
source_ref (decode (NS_user_data (ndt))),
<> of PDU_buffer_aort)

III
Map INS, pr, ps, a, t]
)

(* [] [***** otherwise] ***** *)

372 G. v. Bochmann / Formal description techniques

where

process PDU_handler [NS, pr, ps, t]
(NC_id : NCEP id sort,T_suf : T_suffix_sort, EP_id : TCEP id sort,
local_ref, remote_ref : reference_sort, buffer : PDU_buffer_sort)
: exit :=

(* accepting PDU's from the assigned AP xxxx module *)

Q I ps !T_suf !EP_id ?PDU : p_info;
PDU_handler [NS, pr, ps, t]

(NC id, T_suf, EP_id, local_ref, remote_ref, buffer ++,String (PDU))

[] (* advance fast PDU's over normal ones in the buffer *)
i; PDU_handler INS, pr, ps, t] (NC_id, T_suf, EP_id, local ref,

remote_tel, advance (buffer))

[] (* drop PDU's during disconnection phase *)
i; PDU_handler INS, pr, ps, t] (NC_id, T_suf, EP_id, local_ref,

remote_ref, drop (buffer))

[] (* sending a PDU *)

Q I [buffer ne <>] ->
NS !NC_id !make_NDATAreq (encode (make_PDU (first (buffer),

remote_ref, local_ref)) ,true) ;
PDU handler INS, pr, ps, t]

(NC_id, T_suf, EP_id, local_ref, remote_ref, tail (buffer))

©

[] (* receiving a PDU *)
NS ! NC id

?ndt : NDATA_sort [(dest_ref (decode (NS_user_data(ndt))) eq local_ref)
and EoNSDU (ndt)] ;

([checks (decode (NS_user_data (ndt)))] ->
pr ! T_suf ! EP id !p_PDU (decode (NS_user_data (ndt))) ;
PDU handler INS, pr, ps, t]

(NC_id, T_suf, EP_id, local_ref,
update_souroe_ref (remote ref, decode (NS user_data(ndt))),buffer)

[]

[not (checks (decode (NS_user_data (ndt))))] ->
[* ***** *)

PDU handler [NS, pr, ps, t]
(NC_id, T_suf, EP_id, loca1_ref, remote ref, buffer)

)

[] (* termination of Transport connection *)
t !T_suf !EP id !NC_id !local_ref;
exit

where

type PDU_ordering is order_type, PDU_buffer_type
opns

order : p info -> order_sort
drop : PDU_buffersort -> PDU_buffer_sort
advance : PDU buffer sort -> PDU buffer sort

eqns forall p : p_info , s : PDU_buffer_sort

ofsort order sort
IsCR_PDU (p) => order (p) = first;
IsCC_PDU (p) => order (p) = first;
IsDR_PDU (p) -> order (p) - destructive;
IsDC_PDU (p) -> order (p) - destructive;
IsDT PDU (p) => order (p) - normal;
IsAK_PDU (p) -> order (p) = fast;

G. v. Bochmann / Formal description techniques 373

ofsort PDU_buffer_sort
drop (<>) - <>;
order (first (s)) eqdestructive -> drop (p + s) = s;
order (first (s)) ne destructive -> drop (p + s) s p + drop (s)~
advance (<>) = <>;
order (p} eq normal, order (first (s)) eq fast ->

advance (p + s} - first (s) + (p + tail (s));
advance (p + s) = p + advance (s); (* This rule should be applied

if the above rule is not
applicable *)

endtype

endtype
endproc (*PDU_handler *)
endproc (* Map *)

(*** Network Connection Management ***)

process NC_manager [a (* assign *),
(NC_id : NCEP id sort,
: noexit :=

t (* terminate *)]
remote N addr : N address sort)

(* assignment of new Transport connection *)
a !NC id ?T suf : T_suffix_sort ?EP id : TCEP id sort ?PDU : p_info

!remote N addr ?local ref : reference sort ?d : direction ?accepted : Bool;
NC_manager [a, t] (NC_id, remote N addr)

[]
(* termination of a Transport connection *)
t ?T suf : T suffix sort ?EP id : TCEP id sort

!NC_id ?ref : reference_sort~
NC_manager [a, t] (NC_id, remote N addr)

endproc (* NC_manager *)

(*** Unique Reference Numbers ***)

process Unique_refs [a, t] (ref_set: ref set sort) : noexit :=

(* assignment of new Transport connection *)
a ?NC id : NCEP id sort ?T suf : T suffix sort ?EP id : TCEP id sort

?PDU : p_info ?remote_N_addr : N_address_sort
?local_ref : reference_sort ?d : direction ?accepted : Bool
[local_ref NotIn ref_set]~

Unique_refs [a, t] (Insert (local_ref, ref_set))

[]
(* termination of a Transport connection *)
t ?T suf : T suffix sort ?EP id : TCEP id sort

?NC__id : NC--EP id sort ?ref--: reference_sort;
Unique_refs [a, t] (Remove (ref, ref_set}}

endproc (* Unique_refs *)
endproc (* TP_entity *)
endspec (* simple_TP *)

374 G. o. Bochmann / Formal description techniques

Annex 3. Simplified Transport Protocol Specification in SDL

SYSTEM TP_protocol;

***** type definitions *****

SIGNAL

SIGNAL

TCONreq (T_address, options_type, Pid),
TCONind (T_address, type, options_type, Pid),
TCONresp (options_type, Pid),
TCONconf (options_type, Pid),
TDISreq,
TDISind (reason_type),
TDATAreq (data type, boolean),
TDATAind (data type, boolean),
U_READY (credit_type),
READY;

NDATAreq (datatype, boolean),
NDATAind (data type, boolean);

CHANNEL TS interface

FROM ENV TO TP_entity
U_READY;

FROM TP_entity TO ENV
READY;

ENDCHANNEL TS interface;

WITH

WITH

TCONreq, TCONreap, TDISreq, DTATAreq,

TCONind, TCONconf, TDISind, TDATAind,

CHANNEL NS interface

FROM ENV TO TP_entity WITH NDATAind;

FROM TP_enti ty TO ENV WITH NDATAind;

ENDCHANNEL TS_interface;

BLOCK TP_endty;

***** type defimfions*****

CONNECT TS interface AND R1, R2;

CONNECq" NS interface AND R4;

SIGNALROUTE RI FROM ENV TO Map WITH TCONreq;
SIGNALROUTE R2 FROM ENV TO AP WITH TCONresp, TCONconf,

TDISreq, TDISind, TDISeonf, TDATAreq, TDATAind, U_READY, READY;
SIGNALROUTE R3 FROM MAP to AP wi th transfer, terminated_from_Map,

terminated from_AP, ready;
SIGNALROUTE R4 FROM ENV TO MAP WITH NDATAreq, NDATAind;

SIGNAL
transfer (PDU and control_information, T_suffix-type, TCEP_id_type),
terminated_from_Map,

G. v. Bochmann / Formal description techniques 375

terminated_from AP (Tsuffix_type, TCEP_id_type),
ready (T suffix_type, TCEP_id_type);

PROCESS Map (1,1) REFERENCED;

PROCESS AP (0,) REFERENCED;

ENDBLOCK TP_entity;

ENDSYSTEM TP_protocol;

PROCESS Map (1,1);

***** similar to Map in Annex 1
In addition it performs the following actions:

(I) It receives TCONreq from user processes and creates a corresponding AP process instance,
to which it then forwards the TCONreq interaction. The TCONreq includes as additional
parameter the Pid of the user process to which the created AP process returns the TCONconf
directly. The TCONconf also includes as additional parameter the Pid value of the AP process
which the user process has to use to send the subsequent service interactions directly to the
responsible AP process.

(2) A similar operation is performed for connection requests coming from the remote side.

ENDPROCESS Map;

PROCESS AP (0,);

DCL ****** as in Annex 1, plus the following ******
user Pid Pid,
T suf T_su~xtype,
EPid TCEP_id_type;
/* the latter two additional variables are used for communication with the Map
process to indicate the identity of the AP process instance */

***** transition TI , similar to Annex 1 *****

/* the following SDL transition corresponds to transitions T2a, T2b, and T2c of Figure 3 */

STATE wait_for CC;
INPUT transfer (PDU);

DECISION PDU: kind
(CC): DECISION (PDU! option_ind <ffi options)

(true): options:= PDU! option_ind;
TRseq :ffi O;
TSseq : - O;
S_credit :ffi PDU! credit__value
OUPUT TCONconf (options, SELF)
NEXTSTATE open;

TO user-Pid;

(false): OUPUT TDISind (procedureerror) To nser-Pid;
OUTPUT transfer (DR_PDU (procedure_error),

376

NEXTSTATE

ENDDECISION;

G. v. Bochmann / Formal description techniques

T_suf, EP_id) TO MAP;
wait for DC;

(DR):

OUTPUT TDISind (PDU! disconnect-reason) TO user_Pid;
OUTPUT terminated_from_AP (T_suf, EP_id) TO MAP;
NEXTSTATE closed;

ENDDECISION,

***** transitions similar to Annex I *****

ENDPROCESS AP;

R e f e r e n c e s

[1] S. Aggarwal, D. Barbara and K.Z. Meth, SPANNER: A
Tool for the Specification, Analysis, and Evaluation of
Protocols, 1EEE Trans. Software Engrg. 13 (1987) 1218-
1237.

[2] G. v. Bochmann, Finite State Description of Communica-
tion Protocols, Comput. Networks 2 (1978) 361-372.

[3] G. v. Bochmann, Examples of Transport Service Specifi-
cations, Doc. de travail #145, Dept. d'IRO, Univ. de
Montreal; also submitted to ISO and CCITT working
groups on FDT, 1983.

[4] G. v. Bochmann, Usage of Protocol Development Tools:
The Results of a Survey (invited paper), in: Proc. 7th
IFIP Symposium on Protocol Specification, Testing and
Verification, Zurich (1987).

[5] G. v. Bochmann, Comparison of SDL and Estelle in View
of Finding a Usable Language Subset and Compatible
Tools, prepared for Siemens, Munchen, 1987.

[6] G. v. Bochmann, Protocol Specification for OSI, Comput.
Networks ISDN Systems 18 (3) (1990) 167-184.

[7] P. Zafiropulo, C.H. West, H. Rudin, D.D. Cowan and D.
Brand, Towards Analyzing and Synthesizing Protocols,
IEEE Trans. Comm. 28 (4) (1980) 651-660.

[8] G. v. Bochmann, E. Cerny, M. Maksud and B. Sarikaya,
Testing of Transport Protocol Implementations, in: Proc.
CIPS Conference, Ottawa (1983) 123-129.

[9] G. v. Bochmann, G. Gerber and J.M. Sen'e, Semiauto-
matic Implementation of Communication Protocols, IEEE
Trans. Software Engrg. 13 (9) (1987) 989-1000; reprinted
in: D.P. Sidhu, ed., Automatic Implementation and Confor-
mance Testing of OS1 Protocols (IEEE, New York, 1989).

[10] G. v. Bochrnann and A. Finkel, Impact of Queued Inter-
action on Protocol Specification and Verification, in: Proc.
International Symposium on Interoperable lnformatics Sys-
tems (ISIIS), Tokyo (1988) 371-382.

[11] T. Bolognesi and E. Brinksma, Introduction to the ISO
Specification Language Lotos, Comput. Networks ISDN
Systems 14 (1) (1987) 25-59.

[12] E. Brinksma, G. Scollo and C. Steenbergen, Lotos Specifi-
cations, Their Implementations and Their Tests, in: Proc.

IFIP Workshop on Protocol Specification, Testing and
Verification VI, Montreal (North-Holland, Amsterdam,
1986) 349-360.

[13] S. Budkowski and P. Dembinski, An Introduction to
Estelle: A Specification Language for Distributed Sys-
tems, Comput. Networks ISDN Systems 14 (1) (1987)
3-23.

[14] R.H. Campbell and A.N. Haberrnann, The Specification
of Process Synchronization by Path Expressions, in: Lec-
ture Notes in Computer Science 16 (Springer, Berlin,
1974).

[15] CCITT SG XI, Recommendation Z.100, 1987.
[16] J.P. Courtiat, Estelle * : A Powerful Dialect of Estelle for

OSI Protocol Description, in: Proc. IFIP Symposium on
Protocol Specification, Testing and Verification, Atlantic
City (1988).

[17] C. Vissers, G. Scollo and M. v. Sinderen, Architecture and
Specification Style in Formal Descriptions of Distributed
Systems, in: Proc. IFIP Symposium on Protocol Specifica-
tion, Testing and Verification, Atlantic City (1988).

[18] E. Dubois et al., A Framework for the Taxonomy of
Synthesis and Analysis Activities in Distributed System
Design, in: R. Speth, ed., Research into Networks and
Distributed Applications (North-Holland, Amsterdam,
1988) 859-872.

[19] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifi-
cations 1 (Springer, Berlin, 1985).

[20] M.G. Gouda and Y.-T. Yu, Synthesis of Communicating
Finite State Machines with Guaranteed Progress, IEEE
Trans. Comm. 32 (7) (1984) 779-788.

[21] J. Guttag, Abstract Data Types and the Development of
Data Structures, Comm. ACM 20 (6) (1977) 396-404.

[22] ISO TC97/SC16 N1347, A FDT Based on an Extended
State Transition Model, revised July 1983.

[23] ISO 97/21 N1540, Potential Enhancement to Lotos, 1986.
[24] ISO TC97/SC6 N 3576, Formal specification of Trans-

port protocol in Estelle, 1986.
[25] ISO TC97/SC6 N Formal specification of Transport

protocol in Lotos, 1986.
[26] ISO DIS9074, Estelle: A Formal Description Technique

Based on an Extended State Transition Model, 1987.

G. v. Bochmann / Formal description techniques 377

[27] ISO DIS8807, LOTOS; A Formal Description Technique,
1987.

[28] ISO TC97/SC6/WG-4N ad hoc group on Formal De-
scription of Transport in Iotas, Formal Description of
ISO 8073 in Lotas, 1987.

[29] ISO TC97/SC6, IS 8073, OSI - connection Oriented
Transport Protocol Specification.

[30] C. Jard, J.F. Monin and R. Groz, Experience in Imple-
menting Estelle-X.250 in VEDA, in: M. Diaz, ed., Proto-
col Specification, Testing and Verification V (North-Hol-
land, Amsterdam, 1985).

[31] G. Karjoth, Implementing Process Algebra Specifications
by State Machines, in: Proc. IF1P Symposium on Protocol
Specification, Testing and Verification, Adantic City (1988).

[32] R. Milner, A Calculus of Communicating Systems, Lec-
ture Notes in Computer Science 92 (Springer, Berlin,
1980).

[33] R. De Nicola, Extensional Equivalences for Transition
Systems, Acta Inform. 24 (1987) 211-237.

[34] D. Rayner, OSI Conformance Testing, Comput. Networks
ISDN Systems 14 (1987) 79-98.

[35] F. Belina and D. Hogrefe, The CCITT-Specification and
Description Language SDL, Comput. Networks ISDN Sys-
tems 16 (1989) 311-341.

[36] B. Sarikaya, G. v. Bochmann and E. Cerny, A Test Design
Methodology for Protocol Testing, IEEE Trans. Software
Engrg. (April 1987) 518-531.

[37] G. Scolio and M. Sinderen, On the Architectural Design
of the Formal Specification of the Session Standards in
LOTOS, in: Proc. IF1P Symposium on Protocol Specifica-
tion, Testing and Verification, Grag Rocks (North-Hol-
land, Amsterdam, 1986).

[38] D.P. Sidhu and T.P. Blumer, Semi-automatic Implementa-
tion of OSI Protocols, Comput. Networks [SDN Systems,
18 (3) (1990) 221-238.

[39] Spc~dal Issue on Open Systems Interworking, Proc. IEEE
(December 1983).

[40] M. Steinacker, Comparison of Two Specification Lan-
guages, in: L. Csaba et al., ¢ds., Computer Network Usage
(North-Holland, Amsterdam, 1985).

[41] The SPECS Consortium and J. Bruyning, Evaluation and
Integration of Specification Languages, Comput. Networks
ISDN Systems 13 (1987) 75-89.

