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Abstract. Formal description techniques have been developed 
for the specification of OSI communication protocols and 
services, and can also be used as specification langnages for 
other application areas. This paper presents two complete 
example specifications of a simplified Transport protocol (class 
2) written in Estelle and LOTOS, and the outline of a similar 
specification in SDL. These examples are of sufficient com- 
plexity to demonstrate the difficulties encountered in the devel- 
opment of formal specifications. They may also be taken as a 
basis for a comparative evaluation of the three languages, 
Estelle, LOTOS and SDL, bearing in mind that they are 
particular examples. 
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1. Introduction 

The orderly introduction of new communica- 
tion protocols, for proprietary systems or Open 
Systems Interconnection (OSI) [39], requires a 
careful analysis of the proposed protocols and 
services, and much effort for the development and 
testing of protocol implementations. Much re- 
search effort has gone into improving the working 
methods for these activities. In this context, the 
use of formal description techniques (FDTs) for 
the specification of communication protocols and 
services has received much attention, since such 
techniques allow a more systematic approach for 
protocol validation, implementation and testing, 
as compared to the traditional use of protocol 
specifications given in natural language (see for 
instance [6] or [4]). 

Three FDTs are presently considered for appli- 
cation in this area, namely Estelle [13,26], LOTOS 
[11,27] and SDL [15,35]. Estelle and LOTOS are 
developed within ISO for application to OSI, but 
can also be used in other areas of application. 
Estelle is based on a finite state machine model 
which is extended by Pascal data structures, ex- 
pressions and statements for the description of 
interaction parameters, additional state variables 
and related processing. A specified system may 
consist of a large number of interconnected state 
machine modules. LOTOS is a combination of a 
variation of Milner's CCS formalism [32] with a 
particular notation for abstract data types called 
ACT ONE [19]. Similar to the other FDTs, it 
allows the construction of a specification from 
several smaller components. SDL was originally 
developed by CCITT for the description of switch- 
ing systems, but can also be used in other areas of 
application. Like Estelle, it, is based on an ex- 
tended finite state machine model. It is largely 
oriented towards a graphical representation. The 
original language has been considerably extended 
during the past years, also including facilities for 
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defining data structures, interaction parameters 
and additional state variables. Abstract data types 
are also supported. 

The purpose of this paper is two-fold. First, we 
try to demonstrate the difficulties that arise in the 
development of formal specifications of protocols 
as they appear in real systems by discussing an 
example of sufficient complexity and detail. A 
simplified version of the OSI class 2 Transport 
protocol is chosen for this purpose. It includes, in 
particular, the provision of multiple parallel con- 
nections, multiplexing and flow control. Complete 
specifications in Estelle and LOTOS for this ex- 
ample are given in Annexes 1 and 2. A detailed 
explanation of these specifications is given in Sec- 
tion 3 and highlights the similarities and dif- 
ferences of the different specifications. A sketch of 
a specification in SDL is given in Annex 3. 

In order to provide a basis for the comparison 
of the different FDTs, an effort was made to 
present specifications that are similar to one 
another, as much as this was possible and reasona- 
ble. For example, similar specification structures, 
design choices, and identifier names were chosen 
wherever possible. However, certain structural and 
other differences between the specifications re- 
mained and are largely due to the nature of the 
underlying FDTs. Some of these differences are 
discussed in Section 4. The discussion in Section 4 
concentrates on those aspects of the specifications 
and underlying FDTs which appear to be most 
important for a comparative evaluation of the 
different FDTs. Section 5 provides some conclud- 
ing remarks. 

2. The Role of Protocol Specifications 

Protocol specifications play an important role 
in the development life cycle of distributed sys- 
tems. During the design phase of a distributed 
system, the protocol specifications are developed 
in relation with the communication service to be 
provided by the system and the service available 
from the system layer below, as indicated in Fig. 
1. It is important to thoroughly validate the proto- 
col specification, since it is the reference for the 
implementations in all the system components. 
During the implementation phase, it is not only 
used for deriving large parts of the implementa- 
tion code, but should also serve as the basis for 

the selection of test cases for conformance testing 
and for the evaluation of test results. A more 
detailed discussion of these issues can be found in 
[4,6]. 

If formal specification languages are used in 
the design and implementation phases, different 
descriptions can be used in the successive stages of 
the development process. Starting with abstract 
service and protocol specifications, which corre- 
spond for instance to the OSI service and protocol 
standards, successively more detailed and imple- 
mentation-oriented protocol specifications can be 
developed, which finally lead to the implemented 
program code [9,38]. It seems that these successive 
specifications differ from one another in respect to 
two aspects: 

(a) The specified behavior: Certain behavior 
aspects, not defined in the original specification, 
are determined during the implementation pro- 
cess. This may include the addition of behavioral 
possibilities which were originally not included, 
such as the reaction to certain invalid inputs, or 
the selection of "implementation choices" which 
reduce the number of behavior possibihties, such 
as the selection of options to be implemented. The 
comparison of behaviors can be formalized 
through various equivalences and "implement" 
relations, as described for instance in [33] and [12]. 

(b) The structure of the specification: The struc- 
ture of the more detailed specification reflects in 
certain ways the structure of the intended imple- 
mentation. A structural comparison of specifica- 
tions is difficult to formalize. Vissers et al. identify 
four major specification styles [17] which can be 
classified into extensional specifications, which 
define only "what" the specified system should 
do, and intentional specifications, which also de- 
fine to some extent "how" the specified behavior 
is obtained by giving "implementation hints". The 
specifications given in this paper are partly inten- 
tional. For complex systems, it is often difficult to 
write human-readable specifications without intro- 
ducing some form of internal structure. The inter- 
nal structure of the Transport protocol specifica- 
tions, as shown in Figs. 2-5, clearly indicate more 
detail than the "black box" structure of the proto- 
col entity shown in Fig. 1. 

In addition to the above two aspects, specifica- 
tions can be distinguished by a third aspect [18], 
namely the language in which they are written. 
This is the aspect on which this paper focuses. 
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Fig. 1. Structure of the Transport layer. 
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Fig. 2. Structure of Estelle specification. 

Section 4 also includes some discussion of the 
impact of specification languages on the style of 
specifications. 

3. Explanation of the Transport Protocol Specifica- 
tions 

This section contains a detailed explanation of 
the specifications given in the annexes. Annexes 1 

Q ps,pr 
I I 

Fig. 3. Structure of LOTOS specification. 

and 2 contain complete specifications of a sim- 
plified OSI class 2 Transport protocol [29]. The 
functions supported by this simplified example are 
described in Section 3.2.1 below. The specification 
of Annex 1 was written first (an early draft in 
1984) and has been influenced by an earlier com- 
plete OSI class 0 /2  protocol specification [3]. The 
specification of Annex 2 was written afterwards 
(first version late 1986) and was modelled to same 
extent after the specification of Annex 1. The 
experience of writing this LOTOS specification 
lead to some revisions of the specification in An- 
nex 1. Influences from the formal specifications 
developed within ISO [24,28] must also be 
acknowledged. 

The overall structure of the Transport layer is 
shown in Fig. 1. The users of the Transport service 
access this service through the Transport service 
access points (TSAP), as shown in the figure. The 
Transport service is provided by a collection of 
Transport protocol entities, named TP-entity, 
which in turn use the Network service for the 
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Fig. 4. Structure of SDL specification (using SDL graphic 
symbols). 

exchange of protocol data units (PDUs) between 
one another. A protocol specification is the speci- 
fication which must be satisfied by all protocol 
entities in the layer. 

The Transport service provided by the Trans- 
port entities allows the users to establish Trans- 
port connections between one another. Several 
Transport connections can be established by a 
given user through a given service access point, 
usually leading to different destinations. At a given 
access point, the different connections are dis- 
tinguished by so-called connection end-point iden- 
tifiers (TCEP indentifiers). The different destina- 
tions are distinguished by so-called Transport ad- 
dresses: Each address identifies a single access 
point at the service level. 

For a given Transport connection, the follow- 
ing three phases of operation can be dis- 
tinguished: (1) connection establishment, (2) data 
transfer, and (3) disconnection. During the data 
transfer phase, the users at both ends of the con- 
nection can send and receive simultaneously data 
in both direction. Data transfer is interrupted 
when either user issues a disconnect request. The 
disconnection phase may also be initiated by one 
of the Transport entities involved, or through the 
failure of the underlying Network connection. 

The following explanation of the specifications 
given in the annexes is written as two versions of 
text. Most parts of the versions are identical and 
only written once. Where the corresponding text 
for the Estelle and LOTOS versions are different 
(because of differences in the specifications) the 
two versions are written one after the other in the 
following from " . . . common text.. .  {Estelle:... 
text for Estelle version... } (LOTOS:...text' for 
LOTOS version... } ... continuation of common 
text.. .  ". 

The outline of the SDL specification given in 
Annex 3 follows largely the structure of the Estelle 
specification in Annex 1. Certain differences are 
discussed in Section 4. 

3.1. Internal Structure of a Protocol Entity 

3.1.1. Addressing Conventions 
It is assumed that each protocol entity uses 

only a single Network service access point (NSAP), 

TSAP 

TClde I 

J NCIdentiflcaUon J 

1 TSTP I f ...................... 
- a  d s l  ~ 1  

• = =  / 

NSAP - 

Fig. 5. Structure of ISO LOTOS specification. 
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identified by a particular Network address. This 
implies a hierarchical addressing scheme where 
each Transport address determines the Network 
address over which the TSAP is accessible. In such 
a case, it is convenient to partition the Transport 
address into two parts: the "Network address" 
prefix, and a suffix identifying the TSAP within 
the Transport protocol entity servicing the NSAP 
identified by the prefix. This address structure is 
defined by the T_address_ type definition. 

3.1.2. Service Access Points 
As shown in Fig. 1, a common specification of 

the Transport service access points is used in the 
specifications of (a) the Transport service, (b) the 
Transport protocol entity, and (c) the Transport 
service user, i.e. the Session protocol entity. Such a 
common specification defines the possible interac- 
tions, also called "service primitives", their 
parameters, and the local rules determining the 
possible order of execution. (In the case of the 
LOTOS specification in [28], this common part is 
represented by the subprocesses TCEP which are 
part of the TC processes shown, in Fig. 5.) It is 
noted, however, that the local rules are often not 
explicitly defined. This is also the case for the 
specifications given in the annexes. The Transport 
service primitives and their parameters are defined 
by the part of the specification entitled (Estelle: 
Definition of Transport Service Primitives} 
{LOTOS: TCEP_ primitives}. 

A given Transport connection is identified, 
within the supporting Transport entity, by the 
address suffix of the supporting TSAP and the 
TCEP identifier. {Estelle: The array of interaction 
points TS of the PT_entity module represents the 
service access points of the Transport entity. For 
each interaction taking place at one of these inter- 
action points, the first index of type T_suffix-type 
indicates to which TSAP the interaction pertains; 
the second index indicates the TCEP identifier of 
the connection.} {LOTOS: All Transport service 
interactions take place at the gate TS. Each inter- 
action includes three parameters, namely the ad- 
dress suffix of the TSAP to which the interaction 
pertains, the TCEP identifier of the connection, 
and the service primitive exchanged. } 

A similar specification applies to the Network 
access points. The Network service primitives are 
defined in the part entitled (Estelle: Definition of 
Network Primitives} {LOTOS: NCEP primi- 

tives}. Since only a single Network access point is 
used by a given Transport entity, a Network con- 
nection is identified by the value of its NCEP 
identifier. The Network access point is repre- 
sented by the {Estelle: interaction point array} 
{LOTOS: gate NS of the TP_entity }. 

3.1.3. Submodules of an Entity 
The behavior of the TP_entity is described in 

the following by first defining an internal sub- 
structure of the entity in terms of submodules and 
their interconnection. A static structure shown in 
Figs. 2-5 is assumed. This structure foresees one 
AP module per possible Transport connection, 
and a single Map module which provides the 
multiplexing function and looks after the sending 
and receiving of the TPDUs. This substructure 
can be defined as follows. 

{Estelle: Written at the end of the specifica- 
tion, an array of AP module variables and a Map 
module variable are declared. These modules are 
initialized through the execution of Estelle INIT 
statements which are part of the initialization code 
for the Transport entity. The CONNECT and 
ATTACH statements then create the interconnec- 
tion structure shown in Fig. 2.} 

(LOTOS: The process structure shown in Fig. 
3 is defined by the text of the TP_entity module. 
The parameters tc_ ids and nc _ ids determine what 
the possible connection end-points at the different 
service access points can be. As defined by the 
text of the processes AP_modules and 
NC_managers, their invocation by the TP_entity 
is equivalent to the parallel invocation of a num- 
ber of AP_closed and NC_manager modules, re- 
spectively. A AP_modules process, for instance, 
receives as parameter a set of <T_suffix, 
TCEP_id> pairs which represent a set of possible 
Transport connection identifications. The defined 
process is equivalent to the invocation of a new 
AP_closed process for a selected <T_suffix, 
TCEP_id> pair and its replacement (so to speak) 
by another invocation of AP_modules where the 
selected pair is deleted from the parameter set.} 

The above substructure of a protocol entity is 
one among many possibilities. The choice of a 
particular substructure for the formal specification 
of a protocol entity does not imply that the same 
substructure must be manifest in any implementa- 
tion of the protocol. (An implementation should 
only exhibit the behavior defined by the specifica- 
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tion.) However, the choice has certain implications 
about what properties are evidently satisfied by 
the defined behavior. Important considerations for 
the choice of a substructure are the following: 

(a) Which parts of the specified system operate 
independently of one another? Such parts could 
usually operate "in parallel". 

(b) If two parts of the specified system share 
some common information, these parts may either 
be represented as a single module which contains 
this information as an internal state, or as two 
submodules which exchange their knowledge about 
this information by means of interactions. 

The AP submodules in the protocol entity re- 
finement above operate independently from one 
another, since they deal with separate connections. 
However, the different connections interfere with 
one another when they are multiplexed over a 
single, shared Network connection. The latter 
aspect is handled by the {Estelle: Map module.} 
{LOTOS: Map and Unique_refs modules.} 
{Estelle: The fact that the Map module, by defini- 
tion, executes one transition at a time, and each 
transition deals with a single connection, implies 
that mutual exclusion is established between oper- 
ations for different connections. It is to be noted 
that the sequential execution of the transitions of 
the Map module exhibits less parallelism than 
would be possible. In fact, among the transitions 
of the Map module, there are many that have no 
conflict, nor do they operate on shared informa- 
tion. An implementation could therefore execute 
these transitions in parallel.} {LOTOS: The Map 
module is further subdivided into PDU_handlers, 
one for each Transport connection. The mutual 
exclusion of access to the Network connection is 
realized by the gate NS. A specification describing 
PDU concatenation would probably include a 
subprocess per Network connection. } 

3.2. Functional Decomposition and Inter-module 
Communication 

While the specification substructure shown in 
Figs. 2-5 was obtained by an overall considera- 
tion of independent Transport connections and 
their multiplexing over shared Network connec- 
tions, more detailed design choices must be made 
in order to determine what functions each of the 
submodules should realize. A useful design criteria 
is to minimize the required communication be- 

tween the submodules. These issues, as they relate 
to the Transport protocol, are discussed in this 
section. 

3.2.1. Functional Decomposition 
The following functions of a Transport proto- 

col entity can be identified [8,36]: 
(a) Addressing: To select the correct TSAP for 

remotely initiated connection requests, and select- 
ing Network connections with appropriate remote 
Network addresses for connection requests ini- 
tiated by local users. 

(b) Local identification of Transport connec- 
tions: To identify Transport connections based 
either on locally selected reference numbers (for 
incoming PDUs), or on the local Transport ad- 
dress suffix and the TCEP identifier (for service 
primitives received from the users). 

(c) Connection establishment, and clearing: To 
be able to establish, and clear Transport connec- 
tions, as requested from the remote peer protocol 
entity or the local user. 

(d) Data transfer: To be able to transfer user 
data over established Transport connections. This 
includes the flow control at the local interfaces of 
the Network and Transport SAPs. (Note that the 
principle of flow control is to make the sender side 
wait until the receiver side is ready for reception.) 

(e) End-to-end flow control: To exchange con- 
trol information with the peer protocol entity (in 
the form of acknowledge (AK) PDUs and certain 
parameters of other PDUs) in order to control the 
flow of data between the two protocol entities. 

(f) Option negotiation: To be able to negotiate 
the values of options to be used over a connection 
to be established, based on options proposed by 
the users at the two ends of the connection. 

(g) Connection parameter negotiation: To be 
able to negotiate values of certain parameters to 
be used over a connection to be established. In 
contrast to option negotiation, these parameters 
are selected by the two protocol entities largely 
based on their implementation parameters, and 
possibly also on performance parameters provided 
by the users. 

(h) Multiplexing: The use of a single Network 
connection for several Transport connections 
(provided that the Network prefixes of the Trans- 
port addresses are the same). 

(j) Segmentation: To be able to handle arbi- 
trarily long Transport service data units (SDUs). 



G. v. Bochmann / Formal description techniques 

....... \k 7  o, ,oo,oo-7 
C R / T C O N i n d \  / \ ._ / . . . . . . .  

(Notation:/X means "output of X") 

Fig. 6. State diagram for a single Transport connection. 

341 

It is assumed by the specifications in the annexes 
that the SDU segments provided by the user of 
the service interface are already of such a length 
that they can be included in a single PDU. 

(k) Network connection management: This 
aspect is largely simplified for the specifications in 
the Annexes. It is assumed that the Network con- 
nections are initially established and remain al- 
ways open. 

3.2.2. Allocation of Functions to Submodules 
The functions above are allocated to the two 

types of submodules of the TP-entity based on the 
question whether they can be executed for each 
Transport connection independently of other 
Transport connections, or not. In the former case, 
the function is performed by the AP module 
(which handles a single Transport connection). 
The functions handled by the AP module are data 
transfer, end-to-end flow control, option negotia- 
tion, segmentation. Connection establishment and 
cleating, as well as connection parameter negotia- 
tion involves the AP as well as Map modules. The 
other functions are handled by the Map module. 

This partitioning is reflected in the declaration 
of the {Estelle: local variables} {LOTOS: parame- 
ters} of the submodules. The variable/parameter 
opt of the AP modules records the options selected 
for the connection. The other variables/ 
parameters are sequence counters and credit val- 
ues for window-oriented flow control for the two 
directions of data transfer. 

{Estelle: The variable state represents the major 
state, as shown in Fig. 6} {LOTOS: The major 
states shown in Fig. 6 are represented partly by 
the different A P x x x x  processes, where xxxx 
represents the state where the process starts its 
execution, and partly by the "locus of execution" 
within the active AP_xxxx  process. Note that 
only one of the A P x x x x  processes is active at a 
given time for a given connection.} 

(EsteUe: The body of the Map module contains 
two arrays of state information. The array TC 
records for each Transport connection, identified 
by an index in the array, certain information 
required for the functions performed by the Map 
module. In particular, the variable assigned_NC 
indicates which Network connection is used by the 
Transport connection for the transmission of 
PDUs. The value undefined means that no Net- 
work connection is assigned. (This value is used 
when the Transport connection is in the closed or 
wait _for_ CC state.)} 

(LOTOS: The state information required by 
the Map process for the Transport connections is 
kept as parameters of the PDU_handler sub- 
processes. A PDU_handler process is created 
when a connection is established and contains in 
particular the NC_ id parameter which determines 
the associated Network connection. } 

Since the Network connections are assumed to 
be always open, only minimal information is re- 
quired, namely the Network address of the remote 
Transport entity, which is checked when a new 
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Transport connection is to be allocated. (Estelle: 
The array NC records for each Network connec- 
t ion  this i n f o r m a t i o n . }  { L O T O S :  T h e  
NC_ manager process includes this information as 
parameter.} 

The only global information, pertaining to all 
connections, is the set of local references in use. 
{Estelle: This information is held in the variable 
active _ references of the Map module. } { LOTOS: 
This information is held as parameter of the pro- 
cess Unique _ refs. } 

3.2.3. Communication Between the Submodules 
The communication between the AP and Map 

modules is mainly concerned with information 
about the PDUs exchanged with the remote proto- 
col entity. (Estelle: This information is included 
in the data type TPD U_ and_ control_ information 
which also contains some "control  information" 
(as indicated by the comments). For instance, the 
field full is used to indicate whether a PDU buffer 
contains a PDU or not.} (LOTOS: This informa- 
tion is defined by the data type p_info.} This 
information is exchanged between an AP module 
and the Map module (Estelle: through a channel 
of type PDU_and_control.} (LOTOS: at the gates 
pr and ps, respectively. The gate pr is used for 
reception of PDUs and ps for sending.} 

The {Estelle: interaction terminated } {LOTOS: 
gate t } is used by the modules to indicate to one 
another that a connection is closed after the last 
PDU was received or sent. Additional communi- 
cation is required for flow control (see Section 
3.5). 

{LOTOS: An additional gate a is used for 
assigning a new Transport connection to a given 
Network connection. Interactions at this gate, as 
well as for gate t, involve all submodules of the 
TP_ent i ty  (see Fig. 3).} 

3.3. The AP Module 

The specification of the AP module defines the 
order for exchange of PDUs with the peer Trans- 
port protocol entity and for exchange of service 
primitives with the local user of the Transport  
service. This order is shown in Fig. 6 in the form 
of a state transition diagram. The specification of 
the AP module also defines the allowed interac- 
tion parameters values, not shown in the figure. 

Also not shown in the figure are functions such as 
interface and end-to-end flow control. In order to 
facilitate the dicussions below, the transitions 
shown in the figure are labeled with names T 1 
through Tll. The corresponding parts of the for- 
mal specifications are indicated in the annexes. 

For  the establishment of a Transport  connec- 
tions, there are transitions for the case that the 
connection is initiated by the local user (transi- 
tions T 1 and T 2), and for the case initiated by the 
peer entity (transitions T 3 and T4). The first tran- 
sition is executed when the user initiates a 
TCONreq primitive, which contains as parameters 
the destination address and a proposal for the 
options to be used over the connection. It is 
assumed that the entity is ready to receive such a 
request for the AP in question. The action of the 
AP module is simply to forward a CR PDU to the 
Map module. CR _PDU is a function which is 
introduced to simplify the notation for sending 
PDUs. It returns as result a {Estelle: record of 
type TPD U_ and _ control_ information } ( LOTOS: 
value of sort CR _PDU } which represents a CR 
PDU including the parameters passed to the func- 
tion as arguments, not including, however, the 
local and remote reference numbers which are 
added by the ,Map module. Similar functions are 
defined for forming other kinds of PDUs. The 
definition of these functions can be found in the 
part entitled PDU definitions of the specifications. 
{Estelle: The proposed options are also recorded 
in the local opt variable because their value is 
needed for checking the option parameter of the 
CC PDU to be received.} 

The second transition (T2a) describes the action 
to be taken when a CC PDU arrives (in response 
to the CR sent by the first transition), and checks 
whether the accepted options mentioned in the 
PDU are among those proposed initially. (Note 
that it is possible that the remote user does not 
accept all of the options proposed by the initiator.) 
The AP module records the accepted options, 
which will be used for the established connection, 
and sends a TCONconf primitive to the user 
indicating the successful establishment of the con- 
nection. The CC PDU also contains a credit_ value 
parameter which indicates the credits given by the 
remote entity for data transfer from the local user 
to the remote side. (Estelle: The variables} 
{LOTOS: The parameters of the AP_open process 
named} TSseq and TRseq are the sequence coun- 
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ters for the DT PDUs to be sent and received, 
respectively. They are set to zero. 

Another transition (T2b) is executed when a CC 
PDU is received which contains options not origi- 
nally requested. Such a response is not accepted 
and leads to the termination of the connection. 

The establishment of a connection in response 
to a CR PDU received from the peer Transport  
entity is described similarly by the transitions T3 
and T 4. 

There are many different cases of connection 
termination that may occur, in addition to the 
case above. These cases are described by different 
transitions of the AP modules which are men- 
tioned below. 

Transition Tab is executed when the user re- 
fuses an incoming connection request, given in the 
form of a TCONind, by responding with a TDIS- 
req. It leads to the sending of a DR PDU. Transi- 
tion T2c is executed when such a DR PDU arrives 
in response to a CR PDU sent to the peer proto- 
col entity. 

Transition T9 corresponds to a termination re- 
quested by the local user during the data transfer 
phase. Transition T12 covers the case that the 
termination originates on the other end of the 
connection. In contrast to the initial refusal of a 
connection (transitions T2c or T4¢), the termination 
in the data transfer phase involves the additional 
exchange of a DC PDU. The reception of such a 
DC PDU is described by transition Tlo a. Transi- 
tion Tll, finally, is a spontaneous transition which 
leads to the termination of the connection without 
user initiative. It may be executed by a protocol 
entity in exceptional .situations, for instance in 
case of congestion. 

The data transfer phase of the protocol is de- 
scribed by the transitions T 5 through T 8. The first 
two transitions handle the sending and receiving 
of DT PDUs, respectively. The sequence counter 
and credit var iables/parameters  are updated 
accordingly. Note that on reception, the sequence 
number and the available credit are checked. The 
flow control issues (transitions T7x and Tsx ) are 
discussed in Sections 3.5. 

3.4. The Map Module 

The other functions, such as addressing, PDU 
en- and de-coding, multiplexing, etc. are mainly 

handled by the Map module. Its operation is 
explained in the following. 

{Estelle: The "s ta te"  variables of the Map 
module contains information about all Transport 
connections and Network connections. } { LOTOS: 
The Map process creates a PDU_handler process 
for each established Transport  connection. The 
parameters of this process contain the required 
information on that connection. For each Net- 
work connection, there is also a NC_manager 
process, which includes as parameter the necessary 
information about that connection. The latter 
processes are only involved in interactions on the 
a and t gates at the beginning and end of a 
T r a n s p o r t  connec t ion .  The  PDU_handler 
processes perform the sending and reception of 
PDUs.)  

The sending of PDUs is described in two steps. 
The PDUs received from an AP module are first 
stored in a PDU_buffer (see part Tb). {Estelle: 
There is one buffer for each kind of PDU, for 
each Transport  connection. } { LOTOS: The buffer 
parameter of the PDU_handler process is a se- 
quence of PDUs. The corresponding data type 
PDU_ buffer_ type is based on the predefined string 
type of LOTOS.} 

These stored PDUs may be sent in coded form 
as data fragment in a Network NDATA service 
primitive, as described in part T s. (Estelle: This is 
done by a (spontaneous) transition which is only 
executed when, for a given Transport  connection 
and PDU kind, the PDU buffer contains a PDU, 
and the Network connection assigned to the 
Transport  connection is ready to receive more 
data (flow control at the Network service inter- 
face).} The PDU is coded and sent as a Network 
SDU. Before the PDU is encoded, the information 
received from the AP module is complemented 
with certain PDU parameters which are de- 
termined from the information available in the 
Map module. 

It is important to note that the order in which 
the PDUs for a given Transport  connection are 
sent over the assigned Network connection is not 
necessarily the same in which they were submitted 
by the AP module. It may happen that several 
PDUs are stored some time before they are sent 
(possibly due to Network flow control). For exam- 
ple, expedited data PDUs (not described here) or 
AK PDUs may overtake normal DT PDUs. In 
order to allow for such overtaking, but disallow 
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overtaking of DT over expedited or CC PDUs, 
each kind of PDU is assigned an order attribute 
which assigns a kind of priority to each type of 
PDU ((Estelle: see assignment in functions 
CR _PDU, etc. in the AP module} (LOTOS: see 
type PDU_ ordering )). The predicate order con- 
straint ((EsteUe: a function declared in the Map 
module) (LOTOS: defined in the PDU_ordering 
type}) is used to check that for each PDU sent the 
order in consistent with the priority rules. In ad- 
dition, DR and DC PDUs may overtake other 
PDUs by destroying them, since the Transport 
termination phase is "destructive". (Estelle: This 
is modeled by statement S 1 in transition T3. } 
{LOTOS: The operation drop (see PDU_ordering 
type definition) is used for destructive overtaking. } 

A Network connection must be "assigned" to a 
newly requested Transport connection before any 
PDU can be sent. {EsteUe: This is done by execut- 
ing transition Ta. } (LOTOS: This is done by an 
event at the a gate, and involves the AP, Map, 
Unique_refs, and NC_manager processes.) This 
operation is executed when for a given Transport 
connection a CR PDU (Estelle: has been} 
(LOTOS: is} forwarded by the corresponding AP 
module, and a Network connection exists which is 
connected to a remote entity with has the address 
corresponding to the destination address re- 
quested in the PDU. (LOTOS: This latter condi- 
tion is checked by the NC_manager process.} 
During this operation, a local reference is also 
selected which is used to identify the Transport 
connection among all the other connections han- 
dled by the Transport entity. (Estelle: The selec- 
tion of a new reference is performed by the proce- 
dure assign _new_ref which also updates the set 
of active reference numbers. A specification of a 
possible algorithm is given by the procedure defi- 
nition of the annex.) {LOTOS: The selection of a 
new reference is performed by the event at the a 
gate (which generates the new value) since none of 
the participating processes determines the value. 
The condition that the new reference should pre- 
sently not be in use is imposed by the Unique_ refs 
process.} 

The reception of PDUs is described by part T r. 
This part is executed when a NDATA primitive is 
received from the Network containing the PDU in 
question. 

{Estelle: The received PDU is decoded and the 
function exists_ TP determines whether a corre- 

sponding Transport connection already exists. If 
such a connection does not exists, the PDU should 
be a CR requesting the establishment of a new 
Transport connection. It is assumed that a free 
local Transport end point identifier EP_id can 
always be found for the new connection. The 
value for the local variables of the new connection 
are determined, and the PDU is forwarded to the 
corresponding AP module.) 

(LOTOS: PDUs with values for NC_id and 
dest_ref for which no corresponding PDU_han- 
dler is active must be received directly by the Map 
process. It accepts only CR PDU's (see part Ta. ). 
After the assignment of a local reference (event at 
gate a, see discussion above) a corresponding 
PDU_handler is created and operates in parallel 
with the Map until the Transport connection is 
terminated through an event at the t gate. The CR 
PDU is a parameter of the assign operation and is 
passed during that operation to the assigned AP 
process which processes it further. The AP pro- 
cess participating in the assign operation imposes 
the condition that no Transport connection is 
active at the given end point and the Transport 
address suffix of the end point corresponds to the 
one requested in the CR PDU.} 

If a Transport connection already exists for the 
PDU received, the PDU is immediately forwarded 
to the corresponding AP module. {LOTOS: For 
all PDUs, except CR, this is done by the corre- 
sponding PDU_handler process (see part Tr). ) In 
the case that a CC PDU is received, the remote 
reference is recorded in order to be used as refer- 
ence in the PDUs to be sent for this connection 
{LOTOS: (see function update_source_ref de- 
fined within the PDU_type definition)}. 

3.5. Flow Control and Synchronization Issues 

In the case that a source module transfers data 
to a destination module, it is evident that the 
reception process in the destination process can- 
not go faster than the data output from the source. 
However, buffering problems may occur when a 
fast source does not wait for a slow reception 
process. The purpose of "flow control" is to have 
the source process restrain from sending when 
either the destination or the transmission medium 
is not capable of handling the data at the speed of 
the source. 
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Flow control can be described through differ- 
ent mechanisms. This section discusses how these 
issues are described in the specifications in the 
annexes. The end-to-end flow control mechanism 
performed between the peer protocol entities is 
usually described precisely by the protocol specifi- 
cation, the aspects of interface flow control are 
sometimes ignored [24] or sometimes described in 
a very abstract manner [28]. From the pragmatic 
standpoint, there is clearly a relation between the 
end-to-end flow control and the flow control at 
the interfaces related to the limited buffering 
within the protocol entities. In the specifications 
of the annexes, a particular design choice was 
taken by limiting the amount of buffeting within 
the entities. 

3.5.1. Flow Control for Sending User Data 
Transitions Tga through Tgc deal with end-to-end 

flow control for sending user data. Transition Tsa 
describes the action of the protocol entity when an 
AK PDU is received. The S_credit variable is 
updated according to the credit value received. A 
TDATreq interaction is only accepted when the 
S_credit variable/parameter has a value greater 
or equal to 1. The received user data blocks are 
stored in the PDU buffer of the Map module until 
they are sent over the network. {Estelle: Since the 
PDU buffer is limited to one block only, there is 
the additional condition that the DT PDU buffer 
should be empty. This fact is conveyed by the 
Map module by sending the ready interaction to 
the AP module (see statement S 2 of transition Ts). 
The AP module uses the map_ready variable to 
remember whether the PDU buffer is empty (see 
transition Tsb). When both conditions are satisfied 
a READY interaction is sent to the user module 
(see transition T~). This gives permission to send 
one TDATreq.} {LOTOS: The TDATreq is re- 
ceived from the user by the AP_open process 
through transition 5. The guard S-credit ge 1 and 
the rendezvous nature of the interaction effect the 
flow control. } 

3. 5. 2. Flow Control for Receiving User Data 
The specifications are written in such a manner 

that credit is only given to the remote Transport 
entity for as much data as the user is ready to 
receive. The user indicates his willingness to re- 
ceive data blocks by invoking the U_READY 
service primitive which contains as parameter the 

number of additional blocks to be received. This 
information is stored in the R _credit variable/ 
parameter of the AP module (see {Estelle: transi- 
tion TTa } {LOTOS: transitions T7a and TTa.}). 
The value of R _credit is used to determine how 
many credits are sent in acknowledgment PDUs 
to the remote peer Transport entity (see transition 
TTb). This transition may be executed any time. It 
is assumed that it is executed often enough to 
obtain a reasonable throughput for the data trans- 
fer from the remote site to the local user. 

3.5.3. Synchronization of Connection Termination 
It is important to note that after a TDISreq or 

a TDISind for a given pair of T_suf and EP_id, 
the user should not immediately send a new con- 
nect request, since a DC or DR PDU may still 
have to be sent. It is therefore necessary to advise 
the user when a new TCONreq can be sent. 
{EsteUe: For this purpose the TDISconf service 
primitive and an intermediate state closing are 
introduced. The TDISconf primitive is invoked by 
the Transport entity after each TDISreq or 
TDISind when the transition to the closed state 
occurs.} (LOTOS: The fact that the TCONreq 
interaction (see transition T 1 of the AP_open pro- 
cess) is only possible at the beginning of the AP 
process (which is reimtialized after the complete 
termination of the previous connection, see transi- 
tion T12 of the AP_disc process), and the ren- 
dezvous nature of the TCONreq interaction force 
the user to wait. } 

The AP and Map modules synchronize the 
complete termination of a connection through 
{EsteUe: the terminated interaction} {LOTOS: an 
event at the t gate}. 

3.6. Protocol Functions Not Described 

The following list indicates functions of the 
ISO/CCITT class 2 Transport protocol [29] which 
are not supported by the simplified protocol de- 
scribed in this paper. 
- Only a single Network service access point 

(NSAP) is supported by the specified entity. 
- TPDU size negotiation does not exist. 
- It is assumed that Network connections always 

remain open. No Network connection establish- 
ment, disconnection nor reset are considered. 

- There is no user data in TCON req primitives. 
- Expedited data transfer is not specified. 
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- The handling of procedure errors committed by 
the remote entity is not described. 

- The possible limitation of local resources is not 
considered. 

- There are no address parameters in CC PDUs. 
- S i m p l e  hierarchical addressing is assumed, 

where a Transport address consists of the Net- 
work address prefix and a Transport suffix. 

- The Transport user initiating a connection can- 
not disconnect until the response from the peer 
has been received. 

- There is only limited buffering of user data in 
the Transport entity. 

- Concatenation of several PDUs into a single 
Network service data unit is not described. 

- It is assumed that the user processes do the 
necessary segmentation of longer Transport  
service data units. 

4. Comparison of the Specification Languages 

As pointed out before, the specifications in the 
annexes have been written with the objective to 
make their structure and form as similar to one 
another as seemed reasonable, given the con- 
straints of the different languages. Differences be- 
tween the specifications, which became partly evi- 
dent from the description in Section 3, are there- 
fore largely related to differences between the 
specification languages. The purpose of this sec- 
tion is to discuss the specification differences and 
at the same time discuss certain important dif- 
ferences between the languages. 

It is important to note that the following dis- 
cussion does not pretend to address all important 
differences between these specification languages. 
Additional aspects of comparison between the 
specification languages can be found in [5,40,41]. 

4.1. Synchronous Versus Asynchronous Inter-module 
Communication 

In SDL and Estelle, interaction between two 
modules is through message passing. One module 
generates an output interaction, including its 
parameters and places it into a queue from where 
it is subsequently taken as input by the receiving 
module. This mode of communication is some- 
times called "asynchronous" because the output- 

ting module usually continues its processing be- 
fore the output is processed by the receiving mod- 
ule. 

In LOTOS an interaction between several mod- 
ules can only be initiated if all participating mod- 
ules agree; each of them determine some parame- 
ter values, or impose conditions on these values. 
This mode of communication is also called "syn- 
chronous" or "rendezvous",  because all modules 
participating in an interaction do so at the same 
time, and the execution of an interaction implies a 
simultaneous state change for all participating 
processes. 

This difference in the nature of inter-module 
communication has a strong impact on the way 
the specification languages can be used to define 
communication between different system modules. 
Two particular aspects are discussed in the subsec- 
tions below. It is noted that Estelle also allows for 
the possibility that variables are shared between 
modules. This introduces some form of "synchro- 
nous" communication. Also certain dialects of 
Estelle have introduced rendezvous communica- 
tion as an option [16,22,30]. On the other hand, 
asynchronous communication can be modelled in 
LOTOS by introducing queues explicitly between 
the communicating system modules. 

4.1.1. Flow Control 
With rendezvous interactions, each module par- 

ticipating in an interaction may pose his own 
conditions for the execution of the interaction or 
its parameter values. This may be used for defi- 
ning flow control and other conditions. For exam- 
ple, the interface flow control by which the Trans- 
port entity restrains the user from sending more 
data is described by this mechanism (see Section 
3.5.1). Similarly, the readiness for a new Transport 
connection is indicated in this manner (see Section 
3.5.3). The specification of these issues with 
asynchronous interactions requires additional in- 
teractions (e.g. the R E A D Y  and TDISconf Trans- 
port service primitives in Annex 1). The resulting 
specification is more complex. 

It is important to note that not all flow control 
issues can be handled in this manner. For in- 
stance, data flow control in the other direction is 
handled also in the LOTOS specification of An- 
nex 2 with an additional service primitive (see 
Section 3.5.2). It is noted that these aspects are 
sometimes not defined formally [24], but only 
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informally. They are, however, an important aspect 
of a system, and should be specified. 

4.1.2. Interaction Cross-over at Interfaces 
With rendezvous interactions, all participating 

modules are aware of the execution of an interac- 
tion; with queued interactions, the receiving mod- 
ule may not be aware of the readiness of the next 
input when it produces an output. This may lead 
to unintended cross-overs of interactions between 
two communicating modules, sometimes called 
"collisions". For the specification of Annex 1, for 
instance, a user may output a TCONreq interac- 
tion which is entered into the queue of an AP 
module, while at the same time, the same AP 
module executes a T 3 transition and enters a 
TCONind interaction into the queue of the same 
user module. The possible occurrence of this situa- 
tion is not foreseen in the specification of Annex 
1. (A similar cross-over of CR PDUs may occur at 
the interface between an AP module and the Map 
module.) It is important to note that not all cross- 
overs in corresponding queues lead to such prob- 
lems, e.g. the cross-over of TDATAreq and 
TDATAind interactions at the user interface pose 
no particular problems. 

There seem to be the following approaches to 
solving cross-over problems of asynchronous com- 
munications: 

(1) To ignore them, as in Annex 1 (in general 
not satisfactory). 

(2) To write the specification in such a manner 
that the cross-over situations are taken care of. 
For  the example of Annex 1, one may write the 
specification of the AP module in such a manner 
that an incoming TCONreq interaction in the 
wait_for_TCONresp state (after sending a 
TCONind, see Fig. 6) will be dropped. Inversely, 
the AP module may be defined in such a manner 
that it goes back to the closed state and processes 
the TCONreq normally. These two design choices 
correspond to giving priority to the incoming or 
outgoing calls, respectively. (A general approach 
for handling such conflicts based on priorities is 
described in [20]; cross-over problems at the 
Transport interface are further discussed in [10].) 
It is important to note, however, that such deci- 
sions are adequate for interface standards, but not 
for the abstract interface definitions of protocol 
standards, where such decisions should be left to 
the implementation phase. 

(3) To assure that they cannot occur due to the 
structure of the system specification. For  example, 
any hand-shake oriented communication structure 
avoids cross-overs; therefore, a cross-over of 
TCONresp and TCONconf cannot occur. This ap- 
proach largely limits the kind of possible com- 
munication structures, and therefore is not gener- 
ally applicable. 

(4) To impose a specific run-time environment 
of interpretation rule such that cross-overs cannot 
occur. An example of such a rule is a system-wide 
priority of input transitions over spontaneous 
transitions. Together with a restriction that a tran- 
sition generates at most one output, this rule as- 
sures that any waiting input will be processed 
before another spontaneous transition may pro- 
duce an additional queued interaction. If the sys- 
tem contains initially no queued interaction and 
receives none from its environment (or only a 
single one after all its internally queued interac- 
tions are processed) then the system contains at 
most one queued interaction at any given time, 
and no cross-over can occur. 

4.2. The Concept of "'Transition" 

The languages SDL and Estelle use the concept 
of " transi t ion" to model a state transition of a 
module which is initiated by an available input 
interaction. When executed, a transition leads from 
a given major state through updating of state 
variables and output generation to a new module 
state, in which further input is expected. An exam- 
ple is given in Fig. 6, where each arrow represents 
a transition of the AP module. It is interesting to 
note that the same "transit ions" can also be iden- 
tified within the LOTOS specification. 

In SDL, there is (at most) one transition per 
major state and possible kind of input interaction. 
The next state in which input is expected may 
depend on decisions which are part of the actions 
associated with the transition. A transition, once 
started, cannot be interrupted by other modules. 
The situation is similar in Estelle. However, there 
may be several "Estelle transitions" for a given 
major state and kind of input. Any one of them 
may be executed, unless the associated PRO- 
VIDED clauses define additional conditions. As 
an example, Annex 3 shows how the EsteUe transi- 
tions T2a and T2b are written in SDL as a single 
"S D L transition". 
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In Estelle, there is also the concept of a sponta- 
neous transition, which has the properties de- 
scribed above, except that there is not associated 
input interaction, Instead, a spontaneous transi- 
tion can be selected for execution only based on 
the present major state and other variables as 
expressed in the FROM and PROVIDED clauses. 

A transition has an atomicity property, which 
means that, once started, any output foreseen by 
the transition must be completed before the same 
module can initiate another transition. In the case 
of asynchronous communication, this poses no 
problem, since output is queued in the input 
queue(s) of the receiving module. In the case of 
models of communicating finite state machines 
without queuing (e.g. [2] or [1]) or Estelle dialects 
using rendezvous interactions, the system designer 
must take care that no deadlock situations are 
possible where, for instance, two communicating 
modules are in the midst of a transition and want 
to send output to the other. Note that this situa- 
tion, in the presence of queues, leads to the cross- 
over discussed in Section 4.1.2. 

One way to avoid these deadlock possibihties is 
by restricting transitions to the following kinds of 
basic transitions: 

(a) pure input transition, effecting no output, 
and 

(b) spontaneous output transitions, which are 
initiated independently of any waiting input. 
Many finite state reachability tools are based on 
such a model (e.g. [7]). An SDL or Estelle transi- 
tion can easily be decomposed into several basic 
transitions by the introduction of additional inter- 
mediate states. It is noted that the Map module of 
the Estelle specification in Annex 1 uses only 
basic transitions for the processing of PDUs to be 
sent. With this specification style, it is necessary to 
store the information received with an input in 
appropriate state variables (e.g. the PDU_buffer) 
for use by subsequent output transitions. How- 
ever, such intermediate storage is necessary any- 
way if flow control considerations may disallow 
the production of output, which is the case in our 
example. 

4.3. Assertional Specifications and Abstract Data 
Types 

Estelle uses the Pascal data type definitions, 
procedures and other statements for the definition 

of the operations on interaction parameters and 
state variables. This favors an "algorithmical" 
specification style, which is appropriate for most 
parts of protocol specifications, as our example 
shows. However, there are certain parts in many 
specifications, where a more "assertional" specifi- 
cation style is more appropriate. In the latter style, 
the specification would define what properties the 
module would have, not what algorithm it ex- 
ecutes in order to obtain these properties. A typi- 
cal example is the procedure assign _new_r el  in 
Annex 1, which finds a new local reference for a 
new Transport  connection. The required property 
is that this new reference is not yet in use. The 
Estelle specification uses the EXITS expression 
for this purpose which, however, has no straight- 
forward efficient implementation. In the LOTOS 
specification of Annex 2, this property is ex- 
pressed in the guard of the Unique-refs process 
participating in the assign a operation. 

For implementation purposes, both of these 
specifications would probably have to be changed 
in order to include some more efficient algorithm 
for the selection of a new reference number, such 
as the following: 

var next_ ref: reference_ type; 
begin new_ ref .'= next_ ref; 

active-refs .'= active_ refs + [new_ ref]; 
repeat 
if nex t_ te l  = max_ref  - 1 then next_ref  := 1 

else next_ref  := next_ref  + 1 
until not (next ref in active_refs) or next_ref  
= new_ ref; 

if next_ ref = new_ ref then * * * * * (* too many 
connections * ) 

end 

LOTOS uses an abstract data type formalism 
for the definition of operations related to interac- 
tion parameters and "state  variables", represented 
as process parameters. This formalism favors an 
assertional specification style. On the other hand, 
the present version of LOTOS [27] lacks abbrevia- 
tions for defining simple data structures, e.g. the 
equivalent of Pascal RECORDS, ARRAYS, and 
enumeration types. Such abbreviations [23] have 
already been used in Annex 2 in order to avoid 
unreasonably lengthy and trivial text in the speci- 
fication. The latest version of SDL [15] also in- 
cludes an abstract data type formalism, and pre- 
defined abbreviations for records and array data 
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structures. SDL also allows the declaration of 
variables and the use of assignment statements, in 
contrast to LOTOS which has the flavor of a 
functional language. 

An example related to the use of LOTOS' ab- 
stract data type formalism is the PDU buffer of 
the Map module. The Estelle specification defines 
an array with space for one PDU per kind of 
PDU. This form of specification was chosen in 
order to simplify the description where DT PDUs 
can be overtaken by AK and DR PDUs, and still 
to avoid the complexity of defining a PDU buffer 
containing arbitrarily many PDUs. The LOTOS 
specification defines such an unlimited PDU 
buffer using the string concept, a predefined ab- 
stract data type. An equivalent specification in 
Estelle would require an "algorithmical" defini- 
tion of a queue which usually leads to some imple- 
mentation-oriented choices. Examples of "asser- 
tional" and "algorithmical" queue specifications 
can be found in [21]. 

It is important to note that Lotos does not 
preclude algorithmic specifications. For imple- 
mentation purposes, for instance, the Unique_ refs 
process of Annex 2 could be replaced by the 
following definition which is similar to the Pascal 
algorithm above and allows for efficient imple- 
mentation as discussed in [31]: 
process Unique_refs [a, t] 

(ref_ set: ref_ set_ sort, 
next_ ref: reference_ sort): noexit := 

a ?NC_id: NCEP_id_sort 
?T_ suf: T_suffix_sort 
?EP_id: TCEP_id_ sort 
?PDU: p_info 
?remote_ N_ addr: N address_ sort 
!next_ ref 
?d: direction ?accepted: Bool; 
find_ next-ref [a, t] (Insert (next_ ref, ref_ set), 

next_ ref, next_ ref) 
[ ] * * * * * (* termination *) 
where process find_ next_ ref [a, t] 

(ref-set: ref_ set_sort, 
ref: reference_ sort, 
last-ref: reference_sort): noexit-'= 

( [ref eq max_ref] --* exit(l) 
[ ] [not(ref eq max_ref)] ---, exit(succ(ref))) 

>> accept r: reference_sort in 
( [r Not_ In ref_ set] ~ Unique_ refs [a, t] 

(ref_ set,r) 
[ ] [r eq l a s t  ref] --, * * * * * (* too many 

connections * ) 

[ ] [r In ref_set] ~ find_next_ref(ref_set, r, 
last_ref)) 

end proc end proc 

4. 4. Process Structures 

4.4.1. Static and Dynamic Structures 
The Estelle module instances and the SDL 

processes (in the following simply called 
"processes") usually represent a somehow stable 
processing entity. They can naturally be mapped 
to implementation structures, e.g. "tasks" in oper- 
ating systems or Ada programs, or "processes" in 
Modula. A given specification may either use the 
process creation and deletion facilities of the lan- 
guage for creating dynamically changing process 
structures, or use a static structure of processes 
which can be established during the "initialiTa- 
tion" phase. This latter approach has been taken 
in the example Transport protocol specifications. 
The static part of the specification structures is 
shown in Figs. 2-5. 

A specification structure with dynamically 
created processes has been taken in the EsteUe 
Transport protocol specification of [24]. Here the 
protocol entity module creates a new AP_closed 
submodule (called General-TPM_body in [24])for 
each new connection to be established. The created 
AP_closed submodule looks after the connection 
establishment phase and is replaced by a class- 
specific submodu le  A P _ o p e n _ i  (called 
class_i_ TPM_body) which looks after the data 
transfer and disconnection phase according to the 
selected protocol class. The latter submodule is 
deleted at the end of the disconnection phase. 

In LOTOS, the dynamic invocation of modules 
is an essential feature, since it is the only mecha- 
nism in the language for describing loops. For 
instance, the T 5 transition in the AP_open process 
ends with the invocation of a new version of an 
AP-open process replacing the exiting one. Dy- 
namic process creation is used by the Map module 
which creates a PDU_handler process for each 
new connection. This substructure within the Map 
module could not be used for the EsteUe specifica- 
tion since one module (here the Map) requires 
information concerning multiplexing for several 
connections. In the LOTOS specification of An- 
nex 2, this information is shared among the dif- 
lent submodules through the global gates a, t, ps, 
and pr. 

In SDL, the possible module structuring meth- 
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ods are similar to those of Estelle. For instance, 
the signal routes R2, R3 and R4 shown in Fig. 4 
correspond to the connections shown in Fig. 2. 
However, an important difference is the fact that, 
in SDL, the destination module (i.e. SDL process) 
must sometimes be addressed by its identifier (or 
name), while in EsteUe the local name of the 
interaction point of the sending module is always 
used for this purpose. The destination modules is 
determined indirectly through the interconnection 
structure between the Estelle modules. This allows 
for a more modular specification style, since the 
sending module does not need to know the name 
of the destination. In the SDL example of Annex 
3, this difference requires for instance three ad- 
ditional variables in the A P  process, and corre- 
sponding parameters in the interactions which are 
used for providing the identity of the sending or 
receiving processes. 

4. 4. 2. Constraint-oriented Process Structures 
The multi-way rendezvous interaction provided 

by LOTOS is a very powerful mechanism which 
allows the specification of an interaction involving 
more than two processes. Each of the processes 
may add its own constraints for the interaction, 
such as conditions about parameter values or par- 
ticular ordering between different interactions. A 
simple example is the "assign" interaction at the a 
gate in Annex 2 which involves the following 
processes: One A P  process (order constraint), the 
Map process (no constraint), the Unique_ refs pro- 
cess (constraint on local_ref parameter), and one 
NC_handler process (constraint on remote Net- 
work address in PDU parameter). All constraints 
must be satisfied for such an interaction to occur. 

The use of constraint-oriented process struc- 
tures for LOTOS specifications has been advoc- 
ated in [37,17] and is systematically applied in 
[28]. The idea is related to path expressions [14] 
which also allow the separate specification of con- 
straints on the access of shared ressources, and the 
order in which the user processes wish to access 
these ressources. As shown by a comparison of 
Fig. 3 with Fig. 2, the constraint-oriented specifi- 
cation style provided by LOTOS, combined with 
the introduction of internal events at the gates a, 
t, ps and pr, leads to a quite modular specifica- 
tion structure. 

5. C o n c l u d i n g  R e m a r k s  

Implementations in software or hardware are 
usually obtained through a process of step-wise 
refinement which leads from requirements specifi- 
cations, possibly through several stages of design 
or implementation specifications, to the final 
product. An important attribute of a specification 
language is its ability to express abstract specifica- 
tion which can be used as requirement or design 
specification without implying any design or im- 
plementation choices which would be left open at 
that stage. 

The following properties of LOTOS make it 
particularly suitable for writing abstract specifica- 
tions: 
- assertional specification (see Section 4.3), 
- synchronous communication (see Section 4.1), 
-process  structure without an implementation 

model (see Section 4.4.1), and 
- multi-way rendezvous interactions, allowing a 

constraint-oriented specification style (see Sec- 
tion 4.4.2) 
On the other hand, these same properties also 

make it more difficult to generate implementa- 
tions from LOTOS specifications, as compared to 
specifications written in Estelle or SDL. In fact, 
the assertional parts of specifications must be 
replaced by an equivalent algorithmical part in 
order to proceed to implementation. The imple- 
mentation of the queued inter-module communi- 
cation of Estelle and SDL can be implemented in 
a straightforward manner by message passing 
primitives within a multi-programming operating 
system or a truly distributed system; the imple- 
mentation of rendezvous is more complex in such 
environments. The mapping of SDL and Estelle 
modules into software structures can be per- 
formed in different manners. Each implementa- 
tion support environment for these languages [4] 
usually provides such a mapping. In the case of 
LOTOS, it seems necessary to provide several 
different mappings which are selected depending 
on the particular specification structure. 

The example specifications of the simplified 
Transport protocol in the annexes show that 
specifications with similar structure can be written 
using the different FDTs, Estelle, LOTOS and 
SDL. However, these examples also indicate the 
important differences mentioned above. In fact, it 
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seems that these languages emphasize different 
stages within the implementation process. While 
LOTOS is oriented towards abstract specifica- 
tions, Estelle and SDL specifications tend to be 
closer to implementation. 

The usefulness of a specification language not 
only depends on its ability to express the systems 
properties at the appropriate level of detail, but 
also on the availability of tools for the develop- 
ment of specifications, their validation and imple- 
mentation. The development of such tools for 
these languages, which are still relatively new, is 
an area of much activity [4]. Further experience 
with these languages and related tools is necessary 

for obtaining a complete evaluation of the lan- 
guages. 
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Annex 1. Simplified Transport Protocol Specification in Estelle 

Author: G. v. Bochmann (Originally written February 1984, updated January 1987 and March 1989) 

specification simple_TP; 

default individual queue; (* all queues are individual by default *) 

const maxdata = any integer; 
(* the maximum size of any piece of data 

that the specification may handle *) 

max TCEP id - any integer; 
max NCEP id = any integer; 
max--T suffix = any integer; 

type 

octet = 0 .. 255; 

len_type - 0 .. maxdata; 

data_type = record 
1 : len_type; (* length of data *) 

d : array [i .. maxdata] of octet; 

end; 

(* the standard routines for *******) 

(* the actual data *) 

(*** Definition of Transport Service Primitives ***) 
**************************************************** 

option_type = ...; (* expedited data, etc. *) 

options_type = set of option_type; 
reason type = (TS user initiated, error, procedure_error (* etc. *) 

N address_type = ...; 

T suffix_type = 1..max T_suffix; 

T address type - record 
N_prefix : N_address_type; 

T_suffix : T_suffix type; 

end; 

seq_number_type = 0 .. 127; 

credit type = 0..15; 

) ;  
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channel TCEP_primitives (user, provider); 
by user : 

TCONreq (dest_address : T_address_type; 
proposed_options : options_type); 

(* connect request *) 
TCONresp (accepted_options : options_type); 

(* connect response *) 
TDISreq ; (* disconnect request *) 
TDATAreq (TS_user__data : data_type; 

EoSDU : boolean); (* sending data *) 
U_READY (credits : credit_type); 

(* ready for n additional blocks *) 
by provider : 

TCONind (source_address : T_address_type; 
proposed_options : options_type); 

(* connect indication *) 
TCONconf (accepted_options : options_type); 

(* connect confirmation *) 
TDISind (DIS_reason : reason_type); 

(* disconnect indication *) 
TDISconf; (* connection is terminated *) 
TDATAind (TS_user_data : data_type; 

EoSDU : boolean); (* receiving data *) 
READY; (* ready for one additional block *) 

(* Definition of Network Service Primitives ***) 
************************************************ 

channel NCEP__primitives (user, provider); 
(* similar to TCEP primitives, in particular the primitives *) 
by user : NDATAreq (NSDU_fragment : data_type; 

is_last_fragment of NSDU : boolean); (* sending data *) 
by provider: NDATAind (NSDU_fragment : data_type; 

is_last_fragment of NSDU : boolean); (* receiving data *) 

(*** Definition of the Transport Entity ***) 
******************************************** 

type NCEP_id_type = l..max_NCEP_id; 
TCEP_id_type = l..max_TCEP_id; 

module TP_entity; 
ip TS : array [T suffix_type, TCEP id_type] of 

TCEP_primitives (provider); 
NS : array [NCEP_id_type] of NCEP_primitives (user); 

end; 

body TP_body for TP_entity; 

(*** Definitions Internal to the Transport Entity ***) 
****************************************************** 

const 
max ref = 65535; (* 2"'16 - 1 *) 

type 

reference_type = 0 .. max_ref (* 0 .. (2"'16 - i) *); 
order_type m (first, fast, normal, destructive); 

TPDU_code_type = (CR, CC, DR, DC, DT, AK, undefined_code); 
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TPDU_and_control_information - record 
(* control information *) 

full : boolean; 
order : order_type; 
peer address : T address type; 

(* fields of TPDU *) 
credit value : credit_type; (* used for CR, CC, AK *) 

dest ref : reference type; 
(* used for CC, DR, DC, DT (class 2 only), 

EDT, AK, EAK, ERR *) 
source ref : reference_type; (* used for CR, CC, DR, DC *) 
user_data : (* optional *) data_type; (* see TS *) 

(* used for CR, CC, DR (not in this version 
of the protocol), DT, EDT *) 

case kind : TPDU_code_type of 
CR, CC : ( 

options_ind : options_type; (* see TS *) 
TSAP id calling, 
TSAP id called (* used only for CR *) : T_suffix_type); 

DR : ( 
is last__PDU : boolean; (* control information *) 
disconnect_reason : reason_type); 

DC :(); 
DT : ( 

send_sequence : seq_number_type; 
end of TSDU : boolean ); 

AK : ( 
expected_send_sequence : seq_number_type); 

undefined code : () ; 
end; 

channel PDU and control (protocol, mapping); 
by protocol, mapping : 

transfer (PDU : TPDU and control_information); 
terminated; 

by mapping : 
ready; (* ready for one more block *) 

(* end PDU and control *) 

(*** Definition of the Map Module ***) 
************************************** 

module Map systemactivity ; 
ip AP : array [T_suffixtype, TCEP_id_type] of 

PDU and control (mapping); 
NS : array [NCEP id type] of NCEP_.primitives (user); 

end; 

body Mapbody for Map; 

type 
reference set type ~ set of reference_type; 

var 
TC : array IT_suffix type, TCEP_id type] of record 

local ref : reference type; 
remote ref : reference_type; 
assigned_NC : (* optional *) NCEP id type; 
PDU_buffer : array [TPDU__code__type] of 

TPDU and_cont rol in format ion 

end; 
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NC : array [NCEP id type] of record 
remote_N_addr : N_address_type; (* see NS *) 
end; 

active_references : reference set type; 

(* The following variables are not contributing 
to the state space of the module *) 

T_suf : T_suffix_type; EP_id : TCEP id type; 
(* used in "when AP[T_suf, EP id]..." clause to receive on any value 

of T suf and EP id *) 
NC_id : NCEP_id_type; 
(* used in "when NS[NC_id]..." clause to receive on any value of NC id. *) 

(*** Definition of Local Functions and Procedures ***) 

function exists_TC (NC_id : NCEP id type; 
ref : reference_type) : boolean; 

primitive; 
(* determines whether a TC already exists, i.e. such that 

TC[TC].assigned__NC = NC_id and TC[TC].Iocal ref = ref *) 

function find T suffix (NC_id : NCEP id type; 
ref : reference_type) : T_suffix type; 

primitive; 

function find EP id (NC_id : NCEP id type; 
ref : reference_type) : TCEP id type; 

primitive; 

procedure assign__new_ref (vat new ref : reference_type; 
vat active_refs : reference set type); 

var ref : reference_type; 
begin 

if exist ref : reference_type 
suchthat not(ref in active_refs) 

then begin new ref := ref; 
active_refs := active refs + [new_ref]; 

end 
else ***** (* too many connections *) 

end; 

function form T address (N_address: N_address_type; 
T_suffix: T_suffix_type) : T_address_type; 

primitive; 
(* forms a Transport address from N_address and T_suffix. *) 

procedure assign_new_TCEP_id (vat new EP id : TCEP id type); 
primitive; 

function order constraint (T_suf : T_suffix_type; 
EP_id : TCEP id type; 
kind : TPDU code type) : boolean; 

var OK : boolean; 
begin 

OK := true; 
with TC[T_suf, EP_id] do all k : TPDU_code_type do 

if (k <> kind) 
and PDU buffer[k].full 
and (PDU_buffer[k].order < PDU_buffer[kind].order) 

then OK :m false; 
order constraint := OK; 
end; 

procedure close and clear buffers 
(T_suf : T_suffixSype; EP_id : TCEP id type); 

const undefined = any NCEP id type; 
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var kind : TPDU_code_type; 
begin with TC[T_suf, EP_id] do begin 

assigned_NC := undefined; 
active_references := active_references - [local_ref]; 
for kind := CR to AK do PDU buffer [kind]. full := false; 
end end; 

procedure encode_PDU (PDU : TPDU and control_information; 
d: data_type); 

primitive; 
procedure decode (d: data_type; 

PDU : TPDU and control_information); 
primitive; 

© 

Q 

initialize 
var kind : TPDU_code_type; 
begin 
all T_suf : T_suffix_type do 
all EP_id : TCEP id type do begin 

close and clear_buffers (T suf, EP_id); 
with TC[T_suf, EP id] do 

begin 
for kind := CR to AK do 

PDU_buffer[kind].is_last_PDU := false; 
PDU buffer[DC].is last PDU := true; 
end; 

end; 
end; 

(*** Transitions of the Map Module ***) 
*************************************** 

(* handling interactions from the AP module *) 
trans 
when AP[T_suf, EP_id].transfer (* PDU *) 

(* this input may occur with ANY value of T_suf, EP_id *) 
begin 

TC[T_suf, EP_id]. PDU_buffer [PDU.kind] :- PDU; 
with TC[T_suf, EP_id]. PDU_buffer [PDU.kind] do begin 

full :z true; 
end end; 

when AP [T_suf, EP_id].terminated 
begin close and clear_buffers (T_suf, EP_id) end; 

(* assignment of Network connections for outgoing calls *) 
trans 
any T suf : T_suffix_type; 

EP id : TCEP id type; 
NC id : NCEP id type do 
provided TC[T_suf, EP_id].PDU_buffer[CR].full 

and (TC[T_suf, EP_id].PDU_buffer [CR]. 
peer_address.N_prefix = 

NC[NC_id].remote N addr) 
begin with TC[T_suf, EP id], NC[NC id] do begin 

assigned_NC := NC_id; 
assign new ref (local_ref, active references); 

end end; 

(* similarly: in the case that no suitable Network 
connection exists, a TDISind must be returned to the user; this 
may be initiated by sending a DR PDU to the AP module *) 

(* send a TPDU *) 
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© 
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trans 
any NC_id : NCEP id type; 

T_suf : T_suffix_type; 
EP_id : TCEP id type; 
kind : TPDU_code_type do 
provided TC [T_suf, EP_id] .PDU_buffer [kind] . full 

and (TC[T_suf, EP_id] .assigned_NC = NC_id) 
(* and flow control to Network ready *) 

and order_constraint (T_suf, EP_id, kind) 
var NSDU : data_type; 

begin with TC[T_suf, EP_id] do begin 
with PDU_buffer [kind] do begin 

if kind = CR 
then begin 

TSAP id calling := T_suf; 
TSAP id called := peer_address.T_suffix; 
dest ref := 0; 
end 

else dest_ref :m TC[T_suf, EP_id] .remote_ref; 
if kind in [CR, CC, DR, DC] 

then source ref := TC[T_suf, EP id] .local ref; 
end; 

encode_PDU (PDU_buffer [kind], NSDU); 
output NS[NC_id]. NDATAreq (NSDU, true); 
PDU buffer[kind] .full := false; L- Q if PDU_buffer[kind] .order = destructive 

then all k : TPDU_code_type do PDU buffer[k].full := 
false; 

if (kind = DC) or 
( (kind = DR) and PDU_buffer [kind] .is_last_PDU) 

then begin 
close_and_clear buffers (T_suf, EP id); 
output AP [T_suf, EP_id]. terminated 
end; 

G I  if kind = DT 
then output AP [T_suf, EP_id] . ready; 
end end; 

(* handling of incoming PDU's *) 
trans 
when NS[NC_id]. NDATAind 

(* NSDU_fragment, is_last_fragment of NSDU *) 
(* Assumption: the fragment contains exactly one TSDU *) 
(* Note: flow control to the Transport entity is always ready *) 

var 
received PDU : TPDU and control information; 
(* used to decode NSDU fragments into received_PDU *) 

begin 
decode (NSDU_fragment, received_PDU); 
with received PDU do begin 

if exists_TC (NC_id, dest_ref) 
then begin 

T_suf := find T suffix (NC_id, dest_ref); 
EP_id := find EP id (NC__id, dest_ref) end 

else (* a new TC must be created if PDU is CR *) 
if kind = CR 
then begin 

peer_address := form T address 
(NC[NC_id].remote N addr, TSAP id calling); 

(* Assumption: the address is valid, 
and another connection to that address 
can be supported *) 

T suf :i TSAP id called; 



G. v. Bochmann / Formal description techniques 357 

© 
assign_new_TCEP_id (EP_id); (* such that 

not AP[T_suf, EP_id].in_use *) 
with TC[T_suf, EP_id] do begin 

assig n new ref (local_ref, active_references); 
remote_ref :- source_ref; 
assigned_NC := NC_id; 
end; 

end 
else (* error *); 

case kind of 
CR: (* error *); 
CC : TC[T_suf, EP_id].remote_ref :- source_tel; 
DR, DC,DT,AK: ; 

end; 
output AP [T_suf, EP_id].transfer(received_PDU) ; 
end; 

end; 

end (* Map_body *); 

(*** Definition of the AP Module ***) 
************************************* 

module AP_type systemactivity; 
ip TS : TCEP_primitives (provider); 

Map : PDU and control (protocol) ; 
end; 

body AP_body for AP_type; 

var 
opt : options_type; 
TRseq, 
TSseq : seq_number_type; 
R__credit, 
S_credit : credit_type; 
user_ready : integer; 
map_ready : boolean; 
state closed, wait for CC, wait for TCONresp, 

open, wait for DC, closing; 

stateset 
any_state = [ closed, wait for CC, wait for TCONresp, 

open, wait for DC, closing ]; 

(*** Definition of Local Functions and Procedures ***) 

function impl_choice : boolean; 
primitive; 

(* PDU definitions: The following functions have merely the role 
of assembling their parameters into a record data structure *) 

function CR_PDU (to_adr : T_address_type; 
o : options_type; 
c : seq_number_type) 

: TPDU_andcontrol_information; 
vat PDU : TPDU and control_information; 
begin 

with PDU do begin 
kind := CR; peer_address := to_adr; 
options_ind := o; credit_value := c; 
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order := first; 

CR PDU := PDU; 

end; 

end; 

function CC_PDU (o : options_type; 
c : seq number_type) 

: TPDU and control_information; 

var PDU : TPDU and control information; 

begin 

with PDU do begin 
kind := CC; options_ind := o; 

credit value := c; order := first; end; 

CC PDU := PDU; 

end; 

function DR PDU (r : reason_type; 

last PDU : boolean) 

: TPDU_and_control_information; 

var PDU : TPDU_and_control_information; 

begin 

with PDU do begin 

kind := DR; disconnect reason := r; 

is_last_PDU := last_PDU; order := destructive; end; 

DR PDU := PDU; 

end; 

function DC_PDU : TPDU and control_information; 

var PDU : TPDU_and_control_information; 

begin 

with PDU do begin 

kind := DC; order := destructive; 

DC PDU := PDU; 

end; 

end; 

function DT_PDU (s : seq_number_type; 

d : data_type; 

e : boolean) 
: TPDU_and_control_information; 

vat PDU : TPDU_and_control_information; 

begin 

with PDU do begin 

kind := DT; send_sequence := s; 

user data := d; end of TSDU := e; 

order := normal; end; 

DT PDU := PDU; 

end; 

function AK_PDU (s : seq_number_type; 

c : seq_number_type) 
: TPDU_and_control_information; 

var PDU : TPDU and control_information; 

begin 
with PDU do begin 

kind :- AK; expected_send_sequence := s; 

credit_value := c; order :E fast; end; 

AK PDU := PDU; 

end; 

initialize to closed begin end; 

(*** Transitions of the AP Module ***) 
************************************** 

(*** Connection Establishment ***) 
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trans 
when TS.TCONreq (* dest_address, proposed_options *) 

from closed to wait for CC 
begin 

opt :- proposed options; 
output Map.transfer 

(CR_PDU (dest_address, opt, R_credit)); 
end; 

when Map.transfer (* PDU *) provided ( PDU.kind = CC ) 
and ( PDU.options_ind <m opt ) 

from wait_for_CC to open 
begin 

opt :m PDU.options_ind; 
TRseq :- 0; 
TSseq :- 0; 
S_credit :- PDU.credit_value; 
output TS.TCONconf (opt); 
end; 

when Map.transfer (* PDU *) provided (PDU.kind - CC) 
and not (PDU.options_ind <= opt) 

from wait for CC to wait for DC 
begin 

output TS.TDISind (procedure_error); 
output Map.transfer (DR PDU (procedure_error, false)); 
end; 

when Map.transfer provided PDU.kind = DR 
from wait for CC 

to closed 
begin 

output TS.TDISind (PDU.disconnect_reason); 
output Map.terminated; 
end; 

when Map.transfer (* PDU *) provided (PDU.kind = CR) 
and impl_choice (* assumption: requested options 

are supported by implementation. 
The opposite case is not considered here; 
it could be described by another transition *) 

from closed to wait for TCONresp 
begin 

opt := PDU.options_ind; 
S_credit :- PDU.credit_value; 
output TS.TCONind (PDU.peer_address, opt); 
end; 

when TS.TCONresp (* accepted options *) 
from wait for TCONresp to open 
provided accepted options <= opt 
begin 

opt := accepted_options; 
TRseq :- 0; 
TSseq :m 0; 
output Map.transfer (CC_PDU (opt, R_credit)); 
end; 

(* refusal by the user of a connection indication *) 
when TS.TDISreq 

from wait for TCONresp 
to closing 
begin 

output Map.transfer (DR_PDU (TS_user_initiated, true)); 
end; 
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(*** Connection Termination ***) 

(* disconnect initiative by local user *) 
when TS.TDISreq 

from open 
to wait for DC 
begin 

output Map.transfer 
(DR_PDU (TS_user_initiated, false)); 

end; 

when Map.transfer provided PDU.kind = DC 
from wait for DC to closed 

begin 
output Map.terminated; 
output TS. TDISconf; 

end; 

(* disconnect collision *) 
when Map.transfer provided PDU.kind = DR 

from wait for DC to closed 
begin 

output Map.terminated 
end; 

(* disconnect initiative by Transport entity *) 

trans 
any reason : reason_type do 
from open to wait for DC 

provided reason <> TS user initiated 
begin 

output TS.TDISind (reason); 
output Map.transfer (DR_PDU (reason, false)); 

end; 
(* remote disconnect initiative *) 
trans 
when Map.transfer provided PDU.kind = DR 

from open 
to closing 
begin 

output TS.TDISind (PDU.disconnect reason); 
output Map.transfer (DC_PDU); 
end; 

when Map. terminated 
from closing to closed 

begin 
output TS. TDISconf 

end; 

© 

(*** Normal Data Transfer ***) 

(* sending data *) 
trans 
when TS.TDATAreq (* TS_user_data, EoSDU ~) 

(* Note: the user determines the size of the DT PDU 
which will contain the complete TDATAreq data fragment *) 

provided S_credit > 0 
from open to same 

begin 
S_credit :- S_credit - i; 
output Map.transfer (DT_PDU (TSseq, TS user_data, EoSDU)); 
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TSseq := (TSseq + 1) mod 128; 
map_ready := false; 
end; 

(* receiving data *) 
trans 
when Map.transfer (* PDU *) 

provided PDU.kind ffi DT 
from open to same 

begin 
if (Rcredit <> 0) and (PDU.send_sequence ffi TRseq) 
then begin 

TRseq := (TRseq + 1) mod 128; 
R credit := R credit - 1; 
output TS.TDATAind (PDU.user_data, PDU.end of TSDU); 
end 

else (* error *) 
end; 

(* acknowledgements *) 

trans 
when TS. U READY (* credits *) 

begin R_credit :- R_credit + credits end; 

trans 
from open to same 

begin 
output Map.transfer (AK_PDU (TRseq, R_credit)); 
end; 

trans 
when Map.transfer (* PDU *) 

from open to same 

begin 

provided PDU.kind - AK 

vat new_credit : integer; 

if TSseq < PDU.expected_send_sequence 
then new_credit := PDU.credit_value + PDU.expectedsend_sequence 

- (TSseq + 128) 
else new_credit :- PDU.credit_value + PDU.expectedsend_sequence 

- TSseq; 
if (new_credit >-0) and (new_credit <= 15) 
then S credit :- new credit 
else (* error *); 

end; 

when Map. ready 
begin map_ready := true end; 

trans 
provided map ready and (S credit > 0) 

begin output TS.READY end; 

end; (* AP_body *) 

(*** Part of Transport Entity Body: Creation of Submodules ***) 
*************************************************************** 

modvar 
m : Map; 
aps : array IT_suffix_type, TCEP_id_type] of AP_type; 
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initialize begin 
init m with Map body; 
all T suf : T_suffix_type do 
all EP id : TCEP id .type do begin 

ini~ aps [T_suf, EP_id] with AP_body; 
connect m.AP [T_suf, EP_id] to aps [T_suf, EP_id] . Map; 
attach TS [T_suf, EP id] to aps [T_suf, EP_id] . TS; 
end; 

all NC_id : NCEP_id_type do 
attach NS [NC_id] to m . NS [NC_id]; 

end; 

end; (* TP_body *) 

end. (* of specification *) 

Annex 2. Simplified Transport Protocol Specification in LOTOS 

Author: G. v. Bochmann (April 1987, revised July 1988 and March 1989) 

(* 

Notes: 

(1) The abbreviated notations described in "Potential Enhancements to LOTOS" 
(ISO 97/21 N1540) are used for the description of data types. 
This simplifies the notation, compared with what is allowed according 

to standard Lotos. 

(2) Certain parts of the protocol, in particular error cases are not 

completed. These parts are indicated by *****. 

(3) A corresponding (complete) specification of this simplified Transport 
protocol in standard LOTOS is available from the author. 

*) 

specification simple_TP [TS, NS] (tc ids : TCid_set, nc_ids : NCid_set) 
: noexit 

(* Library definitions *) 
library 

Boolean, Set, String, OctetString, DecNatRepr, 
NaturalNumber (* assumed to include the minus operation 

and the constants 1 and 15 *), 
Element, BasicNonEmptyString 

endlib 

(*** Global Type Definitions ***) 
********************************* 

type T_suffix_type is Boolean 
sorts T suffix sort 
opns _eq_ : T_suffix_sort, T_suffix_sort -> Bool 

T suffix 1 : -> T suffix sort 
(* assumed to include the eq equations *) 

endtype 

type N_address_type is 
sorts N_addresssort 
opns find_remote N addr : 

endtype 

-> N_address_sort 
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type T_address_sort is Tuple make T_addr comp (* abbreviated notation *) 
N prefix : N_address sort, 
T_suffix : T_suffix_sort 

(* can be written in standard Lotos as 
type T_address__sort is N_addresstype, T_suffix_type 

sorts T_addresssort 
opns 

make T_addr : N_address_sort, T_suffix_sort -> T_adc%ress_sort 
Nprefix : T_address_sort -> N_address_sort 
Tsuffix : T_address_sort -> T_suffix_sort 

eqns forall N_p : N_address_sort, T_s : T_suffix_sort 
ofsort N_address_sort 

N_prefix (make T_addr (N p, T s)) m N_p 
ofsort T_suffix_sort 

T_suffix (make T_addr (N_p, T_s)) = T_s 
*) 

endtype 

type reason_type is 
sorts reason sort 
opns 

TS_user initiated : -> reason_sort 
remote3nitiated : -> reason_sort 
(* ***** *) 

endtype 

type direction is 
sorts direction 
opns 

up : -> direction 
down : -> direction 

endtype 

type credit_type is DecNatRepr 
renamedby sortnames credit_sort for Nat 

endtype 

type TCEP_id_type is 
sorts TCEP id sort 
(* for execution, some constant values must be defined *) 

endtype 

type option_type is 
sorts option_sort 
opns expedited_data : -> optionsort 

(* ***** *) 

endtype 

type options_sort is SetOf optiontype (* abbreviated notation *) 
(* can be written in standard Lotos as 
type options_sort 1 is Set 

actualizedby optiontype, Boolean, 
using sortnames option sort for Element 

Bool for FBool 
endtype 
type optionstype is options_sort_l 

renamedby sortnames options_sort for Set 
*) 

endtype 

(*** Definition of Service Primitives ***) 
****************************************** 

(* TCEP_primitives, using abbreviated notation as for T address_sort; "for user" 
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means that this service primitive is created by the service user only *) 

type TCONreq is Tuple make_TCONreq (* for user *) comp 
dest_address : T_addresssort, 
proposed options : options_sort 

endtype 

type TCONind is Tuple make TCONind comp 
source_address : T_address_sort, 
proposed options : options_sort 

endtype 

type TCONEesp is Tuple make_TCONresp (* for user *) comp 
accepted options : option_sort 

endtype 

type TCONconf is Tuple make TCONconf comp 
accepted options : options_sort 

endtype 

type TDISreq is 
sorts TDISEeq 
opns 

make_TDISreq : -> TDISreq (* for user *) 
endtype 

type TDISind is Tuple make TDISind comp 
DIS_reason : reason_sort 

endtype 

type TDATAreq is Tuple make_TDATAreq (* for user *) comp 
TS_user_data : data_sort, 
EoTSDU : boolean 

endtype 

type TDATAind is Tuple make_TDATAind comp 
TS_user_data : data_sort, 
EoTSDU : boolean 

endtype 

type U_READY is Tuple make_U_READY (* for user *) comp 
credits : credit or seq_sort 

endtype 

(* NCEP primitives *) 

type NDATAreq is Tuple make_NDATAreq comp 
NS_user_data : OctetString, 
EoNSDU : Bool 

endtype 

type NDATAind is Tuple make NDATAind comp 
NS user data : OctetString, 
EoNSDU : Bool 

endtype 

(*** Definition of Transport Entity ***) 
**************************************** 

type'NCEP id type is 
sorts NCEP id sort 
(* for execution, some constant values must be defined *) 

endtype 
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type NCid set is SetOf NCEP id sort 
endtype 

(* abbreviated notation *) 

type TCid_set is SetOf TCid_pair 
endtype 

(* abbreviated notation *) 

type TCid_pair is Tuple make T id comp 
compl : T suffix_sort, 
comp2 : TCEP id sort 

endtype 

(* abbreviated notation *) 

type TCid__pair__set is SetOf TCidset 
endtype 

(* abbreviated notation *) 

behavior TP_entity ITS, NS] (tc_ids, nc_ids) 
where 

process TP_entity ITS, NS] (tc_ids : TCid_set, nc_ids : NCid_set) : noexit := 

(* Notes : 

(1) The TP entity contains a single Map process which contains a 
PDU_handler per active Transport connection. 

(2) A transport connection is identified either by the pair of 
T_suffix and TCEP identifier or by the pair NCEP identifier and 
local reference. 

(3) There is one AP_closed process (or AP_open, AP disc, AP_wait for DC 
into which the AP_closed process transforms} per pair of T suffix and 
TCEP identifier. 

(4) There is one NC_manager process per NCEP identifier (i.e. 
per Network connection). 

(5) The following types of parameters are exchanged during the 
interactions at the gates : 

TS : T suf : T suffix sort 
EP_id : TCEP id sort 
TCONreq I TCONind I TCONresp I TCONconf I TDISreq I *** etc. 

a : NC_id : NCEP id sort 
T suf : T suffix sort 
EP id : TCEP id sort 
PDU : p_info 
N_addr: N_address_sort 
local ref : reference sort 
d : direction 
accepted : boolean 

t : T suf : T suffix sort 
E9 id : TCEP id sort 
NC id : NCEP id sort 
ref : reference sort 

ps : T_suf : T_suffix sort 
EP id : TCEP id sort 
PDU : p_info 

pr : T_suf : T_suffix_sort 
EP id : TCEP id sort 
PDU : p_info 
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NS : NC id : NCEP id sort 
NDATA_sort I ***** 

(6) A single Network service access point (NSAP) is assumed. 
*) 

hide pr,ps,a,t in 

(AP_modules ITS, pr, ps, a, t] (tc_ids) 
l[pr,ps,a,t] I 

Map INS, pr, ps, a, t] 
I [ a , t ] l  

NC_managers[a,t](nc_ids) 
f [ a , t ] i  
Unique_refs [a, t] ({} of ref set_sort) 

) 

where 

process AP modules ITS, pr, ps, a, t] (tc_ids : TCid_set) : noexit := 
choice tc_id : TCid pair [] [tc_id IsIn tc_ids] -> 

(AP_closed ITS, pr, ps, a, t] 

(compl (tc_id), comp2 (tc_id), 0 of credit_sort) 
III 
i; AP_modules ITS, pr, ps, a, t] (Remove (tc_id, tc ids))) 

endproc 

process NC_managers Is, t] (nc_ids : NCid_set) : noexit := 
choice NC id : NCEP id sort [] [NC id IsIn nc_ids] -> 

(NC_manager [a, t] (NC_id, find_remote N addr) 
III 
i; NC_managers [a, t] (Remove (NC id, nc_ids))) 

endproc 

(*** Type Definitions Internal to the Transport Entity ***) 
*********************************************************** 

type reference_type is NaturalNumber 
renamedby sortnames reference sort for Nat 

endtype 

type ref set sort is SetOf reference sort 
endtype 

(* abbreviated notation *) 

type seqnumber_type_l is DecNatRepr 
renamedby sortnames seq_number_sort 

endtype 
for Nat 

type seq_number_type is seq_number_type_l, credit_type 
(* has properties of natural numbers; modulo arithmetic and the minus 

operation are defined; conversion to credit type is required 
for type checking consistency of expressions describing the 
reception of AK PDU's *) 

opns 
convert to credit : seq_number_sort -> credit sort 
Pred : seq_number_sort -> seq__number_sort 

- : seq_number_sort, seq_number_sort-> seq._number_sort 
_mod : seq_number_sort, seq_number sort-> seq~_number_sort 
128 : -> seq number_sort 
1 : -> seq number_sort 

equs forall m, n : seq_number_sort 
of sort credit_sort 

convert to credit (0) - 0; 
convert to credit (Succ(n)) - Succ (convert to credit (n)) 



G. o. Bochmann / Formal description techniques 367 

G 

@ 

endtype 

ofsort seq_number_sort 

Pred (Succ (m)) = m; 

Succ (Pred (m)) - m; 

m - 0 = m; 

m - Succ (n) - Pred (m) - n; 
m - Pred (n) - Succ (m) - n; 

m + Pred (n) = Pred (m) + n; 

m * Pred (n) = (m * n) - m; 

m It n => m rood n = m; 
m ge n => m mod n = (m - n} mod n; 
128 z NatNum (Dec (1) ++ Dec (2) ++ Dec (8)); 

1 = Succ (0) 

type order_type is [destructive, normal, fast, first) 
(* abbreviated notation, can be written in standard Lotos 

through representation as integer constants *) 

endtype 

(*** PDU definitions ***) (* using abbreviated notation as for T_address sort *) 

type CR_PDU is Tuple CR_PDU comp 
TSAP id called : T suffix_sort, 

TSAP id calling : T_suffix_sort, 
option_ind : options_sort, 

credit_value : creditsort 

endtype 

type CC PDU is Tuple CC PDU comp 
op[ion_ind : ~ptions_sort, 

credit_value : credit_sort 

endtype 

type DR PDU is Tuple DR PDU comp 

disconnect reason : reason sort 
endtype 

type DT PDU is Tuple DT PDU comp 

send_sequence : seq_number_sort 
user_data : data_sort 

endtype 

type AK PDU is Tuple AK_PDU comp 
expected_send_sequence : seqnumber_sort 

credit value : credit sort 
endtype 

type p_info is EitherOf 

CRPDU, CC_PDU, DR_PDU, DC_PDU, DT_PDU, AK_PDU 

endtype 

(* The above abbreviations can be written in standard Lotos 
in the following form: 

type p_info is Boolean 
sorts p info 

opns 
IsCR_PDU : p_info -> Bool 
IsCC_PDU : p_info -> Bool 
IsDR__PDU : p_info -> Bool 
IsDC__PDU : p_info -> Bool 
IsDT_PDU : p_info -> Bool 
IsAK_PDU : p_info -> Bool 

endtype 
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type CR_PDU is T_suffix_type, options_type, credit_type, p_info 
opns 

CR PDU 

TSAP id called : 
TSAP id calling : 
option_ind 
credit value 

T_suffix_sort, T_suffix_sort, 
options_sort, credit_sort -> p_info 
p_info -> T_suffix_sort 
p_info -> T_suffix_sort 
p_info -> options_sort 
p_info -> credit_sort 

eqns forall Called, 
Cred 

Calling : T_suffix_sort, 
: credit sort 

Opt : options_sort, 

ofsort T suffix sort 
TSAP id called (CR_PDU (Called, Calling, Opt, Cred)) = Called; 
TSAP id calling (CR_PDU (Called, Calling, Opt, Cred)) = Calling 

ofsort options_sort 
option_ind (CR_PDU (Called, Calling, Opt, Cred)) = Opt 

ofsort credit sort 
credit_value (CR_PDU (Called, Calling, Opt, Cred)) = Cred 

ofsort Bool 
IsCR_PDU (CR_PDU (Called, Calling, Opt, Cred)) = true; 
IsDC_PDU (CR_PDU (Called, Calling, Opt, Cred)) = false 

endtype 

type CC_PDU is ***** etc. 
*) 

type PDU_type is CR_PDU, CC_PDU, DR_PDU, DC_PDU, DT_PDU, AK_PDU, reference_type 
sorts PDU sort 
opns 

decode : OctetString -> PDU__sort 
encode : PDU sort -> OctetString 
make_PDU : p_info, reference_sort, reference_sort -> PDU_sort 
source ref : PDU sort -> reference sort 
dest ref : PDU sort -> reference sort 
p_PDU : PDU_sort -> p_info 
checks : PDU sort -> Bool 
update_source ref : reference_sort, PDU__sort -> reference sort 

eqns forall p : p_info, rl,r2 : reference_sort, PDU : PDU_sort 

ofsort PDU sort 
decode (encode (PDU)) = PDU 

ofsort p_info 
p_PDU (make_PDU (p, rl, r2)) = p 

ofsort reference sort 
dest_ref (make_PDU (p, rl, r2)) = rl; 
source ref (make_PDU (p, rl, r2)) = r2; 
rl ne T0 of reference_sort) => update_source_ref (rl, PDU) = rl; 
rl eq (0 of reference_sort) => update_source_ref (rl, PDU) 

= source ref (PDU); 

(* ***** for check (verification of received PDU's) *) 
endtype 

type PDU buffer sort is StringOf p_info (* abbreviated notation *) 
(* can be written in standard Lotos similarly to the "SetOf" construction *) 
endtype 
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(*** Definition of the "AP Module" ***) 
*************************************** 

process AP_closed ITS, pr (* receive PDU *), ps (* send PDU *), 
a (* assign *), t (* terminate *) ] 

(T_suf : T_suffix_sort, EP_id : TCEP id sort, 
R_credit : credit_sort) : noexit := 

(* connection establishment, user initiated *) 

® 

@ 

TS !T suf !EP id ?tcr : TCONreq; 
a ?NC id : NCEP id sort !T suf !EP id 

!CR_PDU (T_suffix (dest_address (tcr)), 
T_suf, proposed_options (tcr}, R_credit) 

!N_prefix (dest_address (tcr)) 
?ref : reference sort !down ?accepted : Bool; 
[accepted] -> 
(pr !T suf !EP id ?PDU : p_info [IsCC_PDU (PDU)]; 

(Toption3nd_CC (PDU] IsSubsetOf proposed_options (tcr)] 
-> 

TS !T suf !EP id 
!make TCON~onf (option ind CC (PDU)); 

CAP_open [TS, pr, ps] 
(T_suf, EP_id, option_ind_CC (PDU), 0 of seq_number_sort, 

0 of seq_number_sort, R_credit, credit_value_CC (PDU)) 
[> AP_disc [TS, pr, ps, a, t] (T_suf, EP_id))) 

[] pr !T_suf !EP_id ?PDU : p_info [IsDR PDU (PDU)]; 
TS !T suf !EP id 

!make TDISi--nd (disconnect_reason (PDU)) ; 
t (* terminate *) !T_suf !EP_id ?id : NCEP id sort 

?r : reference_sort; 
AP_closed ITS, pr, ps, a, t] (T_suf, EP_id, 0 of credit_sort) 

(* [] [ ***** otherwise ] -> ***** *) 
} 

(* [] [not accepted] -> ***** *) 
) 

[] 
ITS !T suf !EP_id ?tsp : U_READY; 
I AP_closed ITS, pr, ps, a, t] (T_suf, EP_id, R_credit + credits (tsp)) 

[] (* connection establishment, initiated by peer entity *) 

a ?NC id : NCEP id sort !T suf !EP id ?PDU : p_info 
?rem-ote_N_addr : N_address_sort ?~ef : reference_sort !up ?accepted : Bool 
[IsCR_PDU (PDU) and (TSAP id called (PDU) eq T_suf}]; 
([accepted] -> 
TS !T suf !EP id 

!make TCONind (make T addr (remote N addr, TSAP id calling (PDU)), 
option_ind (PDU)); 

TS !T suf !EP id ?tcr : TCONresp 
[accepted_options (tcr) IsSubsetOf option_ind (PDU)]; 

ps !T_suf !EP_id 
!CC_PDU (accepted_options (tcr), R_credit); 

(AP_open ITS, pr, psi (T_suf, EP_id, accepted_options (tcr), 
0 of seq_numbersort, 0 of seq_number_sort, 
R_credit, credit_value (PDU)) 

[> AP disc ITS, pr, ps, a, t] (T_suf, EP_id)) 
} 

where 

process AP_open ITS, pr, ps] 
(T_suf : T_suffix_sort, EP_id : TCEP id sort, opt : options_sort, 



370 G. v. Bochmann / Formal description techniques 

TRseq, TSseq : seq_number_sort, R_credit, S_credit : credit_sort) 
: noexit := 

(* receiving data *) 

® 
pr !T_suf !EP_id ?PDU : p_info [IsDT_PDU (PDU)]; 

([ (R_credit ne 0) and (send_sequence (PDU) eq TRseq) ] -> 
TS !T suf !EP id 

!make_TDATA~nd (user_data (PDU), EoTSDU (PDU)); 
AP_open [TS, pr, ps] (T_suf, EP_id, opt, (TRseq + I) mod 128, TSseq, 

R credit - i, S_credit) 
(* [] [ *~*** otherwise ] ***** *) 
) 

[] (* receiving credits from user *) 

I TS !T_suf !EP_id ?tsp : U_READY; 

I AP_open [TS, pr, ps] (T_suf, EP_id, opt, TRseq, TSseq, 
R_credit + credits (tsp), S_credit) 

[] (* sending data *) 

© 
[ S credit ge 1 ] -> (TS !T suf !EP id ?tdt : TDATAreq; 
ps !T_suf !EP_id !DT_PDU (TSseq, TS_user_data (tdt), EoTSDU (tdt)); 
AP_open [TS, pr, ps] (T_suf, EP_id, opt, TRseq, (TSseq + i) mod 128, 

R credit, S_credit - i)) 

[] (* receiving an AK PDU *) 

© 

pr !T_suf !EP_id ?PDU : p_info [IsAK_PDU (PDU)]; 

( [ TSseq it expected_send_sequence (PDU) ] -> exit (TSseq +128) 
[] [ not (TSseq it expected_send_sequence (PDU))] -> exit (TSseq) 

) >> accept s:seq_number_sort in 
(let new_credit : credit sort = credit_value_AK (PDU) + 

convert to credit (expected_send_sequence (PDU) - s) in 
( [ (new_credit ge S_credit) and (new_credit le 15 ] -> 
AP_open [TS, pr, ps] 

(T_suf, EP_id, opt, TRseq, TSseq, R_credit, new_credit) 
(* [] [ ***** otherwise ] ***** *) 

) )) 

[] (* sending an AK PDU *) 

ps !T_suf !EP_id !AK_PDU (TRseq, R_credit); 
AP_open [TS, pr, ps] (T_suf, EP_id, opt, TRseq, TSseq, R_credit, S_credit) 

endproc (* AP_open *) 

process AP_disc [TS, pr, ps, a, t] (T_suf : T_suffix_sort, EP_id : TCEP id sort) 
: noexit : = 

(* disconnect initiated by local user *) 

Q ITS !T_suf !EP_id ?tdr : TDISreq; 

I ps !T suf !EP_id !DR__PDU (TS_user_initiated); 
AP_wai~ for DC [TS, pr, ps, a, t] (T_suf, EP_id) 

[] (* disconnect initiated by remote entity *) 
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pr !T_suf !EP id ?PDU : p_info [IsDR_PDU (PDU)]; 
TS !T_suf !EP_id [make_TDISind (disconnect_reason (PDU)); 
ps !T_suf !EP_id !DCPDU; 
t (* terminate *) !T_suf !EP_id ?MC_id : NCEP id sort ?ref : reference_sort; 
AP_closed ITS, pr, ps, a, t] (T_suf, EP_id, 0 of credit_sort) 

( *  [ ]  * * * * *  * )  

where 

process AP_wait for DC [TS, pr, ps, a, t] (T_suf : T_suffix_sort, 
EP id : TCEP id sort) : noexit := 

@l pr !T_suf !EP id ?PDU : p info [IsDC_PDU (PDU)]; 
t (* terminate ~) !T_suf !EP id ?id : NCEP id sort ?r : reference_sort; 
AP_closed ITS, pr, ps, a, t] (T_suf, EP id, 0 of credit_sort) 

[] (* other PDU's are ignored *) 

pr !T_suf !EP id ?PDU : p_info [not (IsDC_PDU (PDU))]; 
AP_wait for DC [TS, pr, ps, a, t] (T_suf, EP_id) 

endproc (* AP_wait for DC *) 
endproc (* AP_disc *) 
endproc (* AP_closed *) 

© 

(*** Definition of the "Map Module" ***) 
**************************************** 

process Map [MS, pr, ps, a, t] : noexit := 

(* new connection requested by the user: 
if accepted, a new PDU_handler process is created *) 
a ?NC_id : NCEP id sort ?T suf : T_suffix_sort ?EP id : TCEP id sort 

?PDU : p info ?N_addr : N address_sort 
?local ref : reference sort !down ?accepted : Bool; 
([accepted] -> 

(PDU_handler INS, pr, ps, t] 
(NC_id, T_suf, EP_id, local_ref, 0 of reference_sort, 
String (PDU) of PDU_buffer_sort) 

Ill 
Map [NS, pr, ps, a, t] 

) 
(* [] [ ***** otherwise ] ***** *) 

) 
( ]  
( *  

i f  
NS 

new connection requested by the remote entity: 
accepted, a new PDU_handler process is created *) 
?NC_id : NCEP id sort 
?ndt : NDATAind [IsCR_PDU (p_PDU (decode (NS_user_data(ndt)) ) ) ] ; 
!NC id ?T_suf : T_suffix_sort ?EP_id : TCEP id sort 
!p PDU(decode (NS_user_data(ndt))) ?N addr : N address_sort 
?local ref : reference_sort !up ?accepted : Boo1; 
( [accepted] -> 

(PDU_handler [NS, pr, ps, t] 
(NC_id, T_suf, EP_id, local_ref, 
source_ref (decode (NS_user_data (ndt)) ), 
<> of PDU_buffer_aort) 

III 
Map INS, pr, ps, a, t] 
) 

(* [] [ ***** otherwise ] ***** *) 
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where 

process PDU_handler [NS, pr, ps, t] 
(NC_id : NCEP id sort,T_suf : T_suffix_sort, EP_id : TCEP id sort, 
local_ref, remote_ref : reference_sort, buffer : PDU_buffer_sort) 
: exit := 

(* accepting PDU's from the assigned AP xxxx module *) 

Q I ps !T_suf !EP_id ?PDU : p_info; 
PDU_handler [NS, pr, ps, t] 

(NC id, T_suf, EP_id, local_ref, remote_ref, buffer ++,String (PDU)) 

[] (* advance fast PDU's over normal ones in the buffer *) 
i; PDU_handler INS, pr, ps, t] (NC_id, T_suf, EP_id, local ref, 

remote_tel, advance (buffer)) 

[] (* drop PDU's during disconnection phase *) 
i; PDU_handler INS, pr, ps, t] (NC_id, T_suf, EP_id, local_ref, 

remote_ref, drop (buffer)) 

[] (* sending a PDU *) 

Q I [buffer ne <>] -> 
NS !NC_id !make_NDATAreq (encode (make_PDU (first (buffer), 

remote_ref, local_ref) ) ,true) ; 
PDU handler INS, pr, ps, t] 

(NC_id, T_suf, EP_id, local_ref, remote_ref, tail (buffer)) 

© 

[] (* receiving a PDU *) 
NS ! NC id 

?ndt : NDATA_sort [ (dest_ref (decode (NS_user_data(ndt))) eq local_ref) 
and EoNSDU (ndt) ] ; 

([checks (decode (NS_user_data (ndt)) ) ] -> 
pr ! T_suf ! EP id !p_PDU (decode (NS_user_data (ndt)) ) ; 
PDU handler INS, pr, ps, t] 

(NC_id, T_suf, EP_id, local_ref, 
update_souroe_ref (remote ref, decode (NS user_data(ndt))),buffer) 

[] 

[not (checks (decode (NS_user_data (ndt)) ) ) ] -> 
[* ***** *) 

PDU handler [NS, pr, ps, t] 
(NC_id, T_suf, EP_id, loca1_ref, remote ref, buffer) 

) 

[] (* termination of Transport connection *) 
t !T_suf !EP id !NC_id !local_ref; 
exit 

where 

type PDU_ordering is order_type, PDU_buffer_type 
opns 

order : p info -> order_sort 
drop : PDU_buffersort -> PDU_buffer_sort 
advance : PDU buffer sort -> PDU buffer sort 

eqns forall p : p_info , s : PDU_buffer_sort 

ofsort order sort 
IsCR_PDU (p) => order (p) = first; 
IsCC_PDU (p) => order (p) = first; 
IsDR_PDU (p) -> order (p) - destructive; 
IsDC_PDU (p) -> order (p) - destructive; 
IsDT PDU (p) => order (p) - normal; 
IsAK_PDU (p) -> order (p) = fast; 
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ofsort PDU_buffer_sort 
drop (<>) - <>; 
order (first (s)) eqdestructive -> drop (p + s) = s; 
order (first (s)) ne destructive -> drop (p + s) s p + drop (s)~ 
advance (<>) = <>; 
order (p} eq normal, order (first (s)) eq fast -> 

advance (p + s} - first (s) + (p + tail (s)); 
advance (p + s) = p + advance (s); (* This rule should be applied 

if the above rule is not 
applicable *) 

endtype 

endtype 
endproc (*PDU_handler *) 
endproc (* Map *) 

(*** Network Connection Management ***) 
*************************************** 

process NC_manager [a (* assign *), 
(NC_id : NCEP id sort, 
: noexit := 

t (* terminate *)] 
remote N addr : N address sort ) 

(* assignment of new Transport connection *) 
a !NC id ?T suf : T_suffix_sort ?EP id : TCEP id sort ?PDU : p_info 

!remote N addr ?local ref : reference sort ?d : direction ?accepted : Bool; 
NC_manager [a, t] (NC_id, remote N addr) 

[] 
(* termination of a Transport connection *) 
t ?T suf : T suffix sort ?EP id : TCEP id sort 

!NC_id ?ref : reference_sort~ 
NC_manager [a, t] (NC_id, remote N addr) 

endproc (* NC_manager *) 

(*** Unique Reference Numbers ***) 
********************************** 

process Unique_refs [a, t] (ref_set: ref set sort) : noexit := 

(* assignment of new Transport connection *) 
a ?NC id : NCEP id sort ?T suf : T suffix sort ?EP id : TCEP id sort 

?PDU : p_info ?remote_N_addr : N_address_sort 
?local_ref : reference_sort ?d : direction ?accepted : Bool 
[local_ref NotIn ref_set]~ 

Unique_refs [a, t] (Insert (local_ref, ref_set)) 

[] 
(* termination of a Transport connection *) 
t ?T suf : T suffix sort ?EP id : TCEP id sort 

?NC__id : NC--EP id sort ?ref--: reference_sort; 
Unique_refs [a, t] (Remove (ref, ref_set}} 

endproc (* Unique_refs *) 
endproc (* TP_entity *) 
endspec (* simple_TP *) 
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Annex 3. Simplified Transport Protocol Specification in SDL 

SYSTEM TP_protocol; 

***** type definitions ***** 

SIGNAL 

SIGNAL 

TCONreq (T_address, options_type, Pid), 
TCONind (T_address, type, options_type, Pid), 
TCONresp (options_type, Pid), 
TCONconf (options_type, Pid), 
TDISreq, 
TDISind (reason_type), 
TDATAreq (data type, boolean), 
TDATAind (data type, boolean), 
U_READY (credit_type), 
READY; 

NDATAreq (datatype, boolean), 
NDATAind (data type, boolean); 

CHANNEL TS interface 

FROM ENV TO TP_entity 
U_READY; 

FROM TP_entity TO ENV 
READY; 

ENDCHANNEL TS interface; 

WITH 

WITH 

TCONreq, TCONreap, TDISreq, DTATAreq, 

TCONind, TCONconf, TDISind, TDATAind, 

CHANNEL NS interface 

FROM ENV TO TP_entity WITH NDATAind; 

FROM TP_enti ty TO ENV WITH NDATAind; 

ENDCHANNEL TS_interface; 

BLOCK TP_endty; 

***** type defimfions***** 

CONNECT TS interface AND R1, R2; 

CONNECq" NS interface AND R4; 

SIGNALROUTE RI FROM ENV TO Map WITH TCONreq; 
SIGNALROUTE R2 FROM ENV TO AP WITH TCONresp, TCONconf, 

TDISreq, TDISind, TDISeonf, TDATAreq, TDATAind, U_READY, READY; 
SIGNALROUTE R3 FROM MAP to AP wi th  transfer, terminated_from_Map, 

terminated from_AP, ready; 
SIGNALROUTE R4 FROM ENV TO MAP WITH NDATAreq, NDATAind; 

SIGNAL 
transfer (PDU and control_information, T_suffix-type, TCEP_id_type), 
terminated_from_Map, 
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terminated_from AP (Tsuffix_type, TCEP_id_type), 
ready (T suffix_type, TCEP_id_type); 

PROCESS Map (1,1) REFERENCED; 

PROCESS AP (0,) REFERENCED; 

ENDBLOCK TP_entity; 

ENDSYSTEM TP_protocol; 

PROCESS Map (1,1); 

***** similar to Map in Annex 1 
In addition it performs the following actions: 

(I) It receives TCONreq from user processes and creates a corresponding AP process instance, 
to which it then forwards the TCONreq interaction. The TCONreq includes as additional 
parameter the Pid of the user process to which the created AP process returns the TCONconf 
directly. The TCONconf also includes as additional parameter the Pid value of the AP process 
which the user process has to use to send the subsequent service interactions directly to the 
responsible AP process. 

(2) A similar operation is performed for connection requests coming from the remote side. 

ENDPROCESS Map; 

PROCESS AP (0,); 

DCL ****** as in Annex 1, plus the following ****** 
user Pid Pid, 
T suf T_su~xtype, 
EPid TCEP_id_type; 
/* the latter two additional variables are used for communication with the Map 
process to indicate the identity of the AP process instance */ 

***** transition TI ,  similar to Annex 1 ***** 

/* the following SDL transition corresponds to transitions T2a, T2b, and T2c of Figure 3 */ 

STATE wait_for CC; 
INPUT transfer (PDU); 

DECISION PDU: kind 
(CC): DECISION (PDU! option_ind <ffi options) 

(true): options:= PDU! option_ind; 
TRseq :ffi O; 
TSseq : -  O; 
S_credit :ffi PDU! credit__value 
OUPUT TCONconf (options, SELF) 
NEXTSTATE open; 

TO user-Pid; 

(false): OUPUT TDISind (procedureerror) To nser-Pid; 
OUTPUT transfer (DR_PDU (procedure_error), 
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NEXTSTATE 

ENDDECISION; 
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T_suf, EP_id) TO MAP; 
wait for DC; 

(DR): 

OUTPUT TDISind (PDU! disconnect-reason) TO user_Pid; 
OUTPUT terminated_from_AP (T_suf, EP_id) TO MAP; 
NEXTSTATE closed; 

ENDDECISION, 

***** transitions similar to Annex I ***** 

ENDPROCESS AP; 
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